
RESTful Triple Spaces of Things

Aitor Gómez-Goiri, Pablo Orduña, Diego López-de-Ipiña
Deusto Institute of Technology - DeustoTech

University of Deusto
Avda. Universidades 24, 48007

Bilbao, Spain
{aitor.gomez, pablo.orduna, dipina} @deusto.es

ABSTRACT
The demand for Internet-enabled objects which expose their
content in a RESTful and web compliant manner is increas-
ing. Consequently, these objects have to face well-known
problems from the web world. The lack of expressiveness
and human orientation of the syntactically described capa-
bilities and contents of those resources is one of these diffi-
culties. The Semantic Web on the contrary interlinks each
object’s data to one another, enabling its automatic process
to reveal possible new relationships and therefore enhanc-
ing the interoperability of semantic-enabled objects. In this
work we present a semantically enabled Web of Things com-
pliant HTTP interface for Internet-enabled objects which
uses Triple Spaces (TS) as a basis. Specifically, we address
the adoption of this paradigm by a wide range of resource
constrained devices assessing the feasibility of our middle-
ware solution, focusing both on the web and on the seman-
tic aspects. Besides, we stress the degree of interoperability
achieved by the applications made using RESTful TS by
describing two scenarios where it could be used.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Architectures]: Patterns—blackboard

Keywords
Web of Things, Semantic Web, Triple Space Computing

1. INTRODUCTION
As the Internet of Things (IoT) becomes more present,

more initiatives are paying heed to the integration chal-
lenges that this network of heterogeneous devices and plat-
forms creates. One notorious approach is the Web of Things
(WoT) [5], where the capabilities of the devices are shared
through RESTful web services provided from embedded web
servers. As a result, the objects can be easily integrated with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT 2012, June 2012; Newcastle, UK
Copyright 2012 ACM 978-1-4503-0624-9/11/06 ...$10.00.

existing web applications and widespread RESTful services
in Internet.

Another integration style, more focused on coordinating
different devices than on just sharing information, is tu-
plespaces. In tuplespaces, different processes can exchange
information reading and writing in a common space. A
remarkable particularization of tuplespaces is Triple Space
Computing (TS), where semantic RDF triples are shared
in that common space. Due to the use of the Semantic
Web -a common technique used to reach interoperability
between different applications and machines- not explicitly
stated content can be inferred by correlating different de-
vices’ semantic data.

In this work, we present our adaptation of Triple Spaces to
resource constrained devices through an HTTP API. Thanks
to this API, a wide range of devices can be part of TS in
a WoT compliant manner [6]. To support this hypothesis
the solution has been tested in different devices and in two
different stereotypical scenarios.

The rest of the paper is organized as follows. Section 2
outlines related work. Section 3 briefly explains our TS so-
lution. Section 4 explains two study cases where the mid-
dleware could be beneficial in terms of interoperability. Sec-
tion 5 evaluates the use of TS in the different devices em-
ployed in the scenarios. Finally, Section 6 concludes and
discusses future work.

2. RELATED WORK
Many different styles can be used to integrate applications

depending on application requirements. Hohpe et al. [7] enu-
merate batch data exchange, used to export data between
two systems offline; a shared database, which eliminates syn-
chronization issues having the data in a single place but en-
forces the use of a common data model; raw data exchange,
where two entities agree the format and how the data is syn-
chronously exchanged; remote procedure calls, which isolate
the application from raw data exchange; and message ex-
change, which provides reliable asynchronous data transfer.
HTTP has been frequently used in combination with differ-
ent styles, as in the well known set of WS-*standards and
most of services following the REST style. While the WS-
* can be seen as both RPC or message exchange substyle,
the REST style defines an elegant way to define resource-
oriented interfaces which comply with the RPC idea of iso-
lating application from exchange particularities [11]. The
use of both substyles in resource-constrained devices is rep-
resented by Device Profile for Web Services (DPWS) [9],
based on SOAP, and the Constrained Application Protocol

(CoAP) [12] and the Web of Things initiative [5].
Other paradigms follow the idea proposed by Hohpe’s

shared database style of sharing a common space to coordi-
nate different entities. One of those paradigms is tuplespace,
where different processes read and write pieces of informa-
tion called tuples in a space, possibly distributed over dif-
ferent devices. This paradigm has already been adapted to
embedded and mobile devices [1] and in conjunction with
the Semantic Web [10]. In contrast with traditional integra-
tion approaches, the Semantic Web enables the use of very
expressive information and the inference of new implicit in-
formation. One of the approaches which mixes up Semantic
Web with tuplespaces is Triple Space Computing, which uses
similar primitives with RDF triples as exchanged units.

Although different semantic tupplespaces implementa-
tions exist, apart from our solution, only Smart-M3 [8] has
been specifically designed to be run in devices with con-
strained capabilities. The most remarkable difference with
Smart-M3 is the complete decentralization of the informa-
tion. In Smart-M3 the spaces are managed by few machines
and used by the rest of the devices which act as clients using
an XML protocol. In this work every device is in charge of
the knowledge it stores and it is responsible for querying the
rest of the devices belonging to the same space using their
HTTP API.

While the first approach is simpler and relieves the con-
strained devices from answering to the queries, we believe
that the upcoming capabilities of embedded and mobile de-
vices make possible a more autonomous space where any
device is responsible of its information without relying in a
third one and providing fresher sensed data. At the same
time, our solution is browsable and mash up able since it
enables any other WoT solution or web application to sim-
ply consume the information provided by each device in a
RESTful compliant manner. To do that, the developer needs
to know how to interpret the semantic response, which does
not differ much from what a simpler JSON response re-
quires.

3. TRIPLE SPACES OVER HTTP
So far, the compatibility of Triple Spaces with the HTTP

RESTful style has been proved both from a formal [6] and
qualitative point of view [3]. In this section our model to-
wards the achievement of this mapping will be discussed in
detail. This model has been implemented and is publicly
available in the Otsopack Open Source project1.

The Triple Spaces (TS) paradigm basically consists on
writing and reading triples grouped in graphs in different
spaces. Therefore, the resources in TS are RDF graphs
identified by an URI. The most important primitives of our
solution are write, read, take and query. Write adds new
knowledge to a space writing together the given triples in
a new RDF graph and returning its identifying URI. Read
and take return a whole RDF graph which can be selected
by its identifying URI or by a template. When a template
is used, the graph is returned if it contains at least a triple
which matches it. Take differs from read because it also sub-
tracts the returned graph from the space. Query returns the
triples which match a given template conceiving the space
as a whole no matter to which graph they belong to.

One could argue that the query primitive does not really

1http://code.google.com/p/otsopack

Figure 1: Internal structure of a typical Otsopack
implementation.

represent a resource since it returns RDF triples from dif-
ferent resources (i.e. graphs). In any case, we have included
it because this primitive provides a more fine grained view
of the knowledge hold in an space which sometimes may be
useful for the developers using the middleware. The tem-
plate used in these primitives can be as simple as a triple
pattern with wildcards (e.g. “?s rdf:type ont:Sensor”) or
as complex as an SPARQL query, but in this work we have
just considered the first ones.

Remarkably, TS guarantees four basic types of autonomies:
a) time, since one application can store information in the
common space and other applications consume it later in an
asynchronous way; b) space, since applications can run in
different environments as long as they support tuple spaces;
c) reference, since applications should not need to know
where the space is physically stored; and d) vocabulary,
since the information is stored in a semantic format. This
way, two applications using standard ontologies can inter-
act among them automatically enriching one each other, as
long as they use the same space and standard and linked
ontologies.

The Otsopack middleware proposed contains the layers
described in Figure 1. A TS API is provided to the de-
veloper using the middleware in each device, which has the
primitives described above and employs two main functional
blocks: network and data access layers. The network layer
embraces a) the HTTP API provided by any device belong-
ing to a space to made its data available to others and b)
the strategy used to access the knowledge stored on other
devices. At the same time, these strategies use the coordi-
nation layer to discover new devices and the communication
layer to consume those devices’ HTTP APIs.

The knowledge distribution strategies used in TS may
vary from centralized to completely distributed ones. In
the proposed middleware, the technique known as negative
broadcasting is assumed, which implies that all write oper-
ations are executed locally at the node (i.e. the instance
of the middleware running on a device) and all read and
query operations are propagated to the rest of the nodes be-
longing to the same space. Nevertheless, the dissemination
and discovery strategies can be considered transversal to the
adoption of the proposed HTTP API by the resource con-
strained devices and therefore they are out of the scope of
this paper. This way, the results obtained in the evaluation
section are valid for any other web-enabled object which uses
full semantics to describe the provided information. In the

Table 1: Examples of REST access to TS. sp is a space URI, g is a graph URI, t a set of triples, s, p and
o-uri are subject, predicate and object uris or wildcards (represented with a *). When the template’s object
is a literal, it can be expressed specifying its value (o-val) and its type (o-type).

HTTP request URL Returns

GET http://nodeuri/{sp}/graphs/{g} read({s},{g}): t

GET http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-uri} read({sp},"{s} {p} {o} ."):t

http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-type}/{o-val}
DELETE http://nodeuri/{sp}/graphs/{g} take({sp},{g}): t

DELETE http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-uri} take({sp},"{s} {p} {o} ."):t

http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-type}/{o-val}
GET http://nodeuri/{sp}/query/wildcards/{s}/{p}/{o-uri} query({sp},"{s} {p} {o} ."): t

http://nodeuri/{sp}/query/wildcards/{s}/{p}/{o-type}/{o-val}

end, this is what an Otsopack node that does not perform
queries and justs offers its data to other Otsopack nodes, or
even to other WoT solutions, constitutes.

On the other hand, as many REST architectural styles
use HTTP verbs to retrieve, create, modify or delete web
resources and TS does the same with RDF graphs, both
concepts can be easily mapped [6, 3]. More specifically,
the mapping between both styles is summarized in Table 1.
Note that the write primitive is intentionally excluded of this
HTTP API because the writings are always locally invoked
using the middleware’s API.

Otsopack complies with the standardized HTTP status
codes sent back as part of the header in the response (e.g.
when no significant result can be found for a primitive the
404 error is returned). This adoption - apart from enhancing
the compatibility with other web applications - enables the
modular adoption of our API. For instance, if a node does
not offer a wildcard based query and returns a 404 error,
it will not affect the behavior of the rest of the nodes of
an space. Instead, they will interpret these cases as empty
responses. This modularity becomes crucial to enable the
partial adoption of the API on new platforms.

Another key aspect of the HTTP protocol we have taken
advantage of is the content negotiation. This mechanism al-
lows to specify the desired representation for a content on
the client side and to express what representation is sent as
a response from the data provider side. For that purpose the
consumer adds an Accept field to the HTTP header with a
weighted list of media types it understands and the provider
answers with the best possible format it knows about, spec-
ifying the Content-type in the response.

In Otsopack this mechanism not only enhances the brows-
ability of the primitives with human understandable HTML
responses, but they allow different Semantic representations
(e.g. RDF/XML2, N-Triples3 or N34). This characteris-
tic becomes crucial since not all the nodes may understand
all the languages (e.g. a mobile phone may not have a RD-
F/XML parser), even if they all use the same basic concepts:
RDF Triples. The compatibility of both sides can be ensured
through a conversion carried out in the provider side. On
the other hand, even if both the provider and the consumer
know how to use different languages, the preference of some
of them can be easily expressed to achieve other goals (e.g.
to obtain the less verbosed answer).

2http://www.w3.org/TR/REC-rdf-syntax/
3http://www.w3.org/2001/sw/RDFCore/ntriples/
4http://www.w3.org/TeamSubmission/n3/

In the data access layer, as any semantic-based solution
the information stored can be expanded by a Semantic Rea-
soner. Even if at application level the data provider writes
a few triples, this set can be expanded with inferred infor-
mation and other nodes can perform queries on that infor-
mation. Therefore, the amount of requests that can be an-
swered is increased, even if they were not considered in the
producer’s design phase. For instance, if a sensor defines
that the kitchen light is on, and the ontology defines that
the kitchen is next to the living room and that the light is a
sensor, a potential consumer may query for all the sensors
close to the living room.

Although the main API implementation employs RESTlet
(making it Java SE and Android compliant), it has been eas-
ily adapted to very limited devices using Python’s standard
libraries for this work.

4. STEREOTYPICAL SCENARIOS
Otsopack has been used in real scenarios both in a super-

market and in a hospital with more complex applications
within the ACROSS project5. For the sake of brevity and
clarity, two simple and not implemented applications will
be described to show how this middleware can be used to
achieve a higher degree of interoperability than syntactic
WoT solutions.

The applications modeled are the following ones: otsoSe-
curity and otsoHomeAutomation. Both applications con-
sume the data provided by the devices assessed in the eval-
uation section. In both scenarios they coordinate in a de-
coupled mode following the specialist pattern [2]. In this
pattern a master writes a task into the space and waits for
its result, which is performed by some of the workers special-
ized in this particular task (e.g. show a message or regulate
the temperature).

4.1 Security
A security company can develop an application which

monitors different parameters such as the temperature, the
humidity or the CO2 concentration with different sensors
deployed over an industrial facility. Whenever any of this
measures go beyond a determined threshold, the company
needs to take the proper action. To answer to the poten-
tial risks the application creates tasks with different priori-
ties: when a unimportant parameter is outside the expected
boundaries the application can write a low priority task for
the security manager into the space (e.g. the CO2 is slightly

5http://www.acrosspse.com

higher than the normal one), but to warn about an emer-
gency to the users in the facility a high priority one can be
written (e.g when they must leave the building). Then, the
message is consumed by different actuators according to its
priority (e.g. in the manager’s phone in a less intrusive man-
ner or through visual or auditory alarms over the building).

The company can also develop a simpler version of the
same application for the workers’ personal mobile phones to
ensure that they are warned even if the alarms of the main
application fail. To implement both versions of the appli-
cation, commonly used ontologies such as SSN (Semantic
Sensor Network Ontology) or SWEET (Semantic Web for
Earth and Environmental Terminology) can be used, stor-
ing and sharing the triples detailed in Listing 1 in a graph.

Listing 1: Sample triples provided by a NO2 sensor
deployed in the facility.

Subject Pred i cate Object

wot : meas1 rd f : type ssn : Observation
wot : meas1 ssn : observedProperty sweet :NO2
wot : meas1 ssn : obse rvat i onResu l t wot : outpt1
wot : outpt1 ssn : hasValue wot : va l1
wot : va l1 ssb : QuantityValue 17
wot : va l1 dul : i sC l a s s i f i e dBy

muo−ucum : microgram−per−cubic−meter
.

4.2 Home automation
On the one hand, a room has been populated with sev-

eral kind of sensors connected to XBee sensors6 with an IP
gateway7, FoxG208 embedded platform connected to sensors
and to an actuator. Besides, an Android application could
be performed to semantically store the user’s temperature
preferences. An independent node (master node) continu-
ously checks the room temperature using read primitive to
get the first available graph where the last measure is defined
(no matter which device provides that information) and the
user’s desired temperature. When the second one is below
the first one, it generates a “decrease temperature during
a certain period” task which can be consumed by different
independent worker nodes. In this case, the FoxG20 period-
ically checks just for orders it can fulfill and it understands
and consumes them with a take primitive.

Once again common ontologies such as SSN (Semantic
Sensor Network Ontology), MUO (Measurement Units On-
tology) or RECO (RECommendations Ontology) are used
to express these relations. Sample triples provided by the
mobile phone can be found in Listing 2.

Listing 2: Sample triples stored by the Home Au-
tomation application.

Subject Pred i cate Object

ud : aigomez reco : des ireTowards ud : p r e f 1
ud : p r e f 1 rd f : type reco : Pre f e r ence
ud : p r e f 1 ssn : observedProperty swt : Temperature
ud : prefm ssn : obse rvat i onResu l t ud : dout1
ud : dout1 ssn : hasValue ud : dVal
ud : dVal ssn : QuantityValue 20
.

6http://tinyurl.com/xbee-sensors
7http://tinyurl.com/connectportx2
8http://www.acmesystems.it

Table 2: Technical characteristics of the assessed de-
vices.

Device Processor RAM
XBee - 8 MB
FoxG20 400Mhz Atmel ARM9 64 MB
Galaxy Tab 1 GHz Cortex-A8 512 MB
Regular computer 2.26 GHz Intel Core 2 Duo 4 GB

4.3 Interoperability
Given that both systems use a common ontology called

SSN, and through Triple Spaces they can be using a com-
mon space, whenever the Security application asks for triples
matching a template“?s rdf:type sweet:Temperature”, the
Home automation application would return that “wot:mes3
rdf:type sweet:Temperature” along with other informa-
tion stored in that graph. Therefore, the Security appli-
cation would be able to retrieve information from another
application it does not even know. In the same way, it is
feasible that the Home automation application also retrieves
information stored by the Security application in the same
or other nodes.

The key for this interoperability process is that both ap-
plications are using the same language, since both are using
the same concepts of the same ontologies (e.g. SSN). Al-
though this can be achieved mapping concepts from two dif-
ferent ontologies with a semantic web reasoner through the
“owl:sameAs” property, it is habitual to use common on-
tologies. Furthermore, since all the applications should be
interested in retrieving data from other potential ones, the
developers should be willing to employ widely used ontolo-
gies to ease the information exchange among applications.

5. EVALUATION
In order to prove the easy adoption of the proposed mid-

dleware by different platforms and its feasibility, the perfor-
mance of three different resource-constrained platforms has
been evaluated: XBee, FoxG20 and Samsung Galaxy Tab
(for further details see the Table 2). The performance of
Otsopack in a regular computer is also provided as a base-
line for the comparison.

For the RDFS reasoning evaluation, real examples from
the SSN ontology9 have been used. First the TBox10 with
the definition of the terms of this ontology has been loaded
and then the writing of ten different measures was aver-
aged. These measures are represented by graphs (ABox)
with nearly 10 triples extracted from the Bizkaisense dataset11.

Regarding the energy consumption of each implementa-
tion, it greatly depends on network traffic generated by
the knowledge dissemination strategy selected, which has
already been analyzed on a previous work [4].

9http://www.w3.org/2005/Incubator/ssn/wiki/
Semantic_Sensor_Net_Ontology

10In the Semantic Web, TBox contains the knowledge which
describes general properties of concepts or terminology (e.g.
the type of devices and the sensors they have) and ABox
contains knowledge that is specific to the individuals of the
domain of discourse (e.g. the mobile brand is HTC or the
sensed temperature is 3◦C).

11http://dev.morelab.deusto.es/bizkaisense

5.1 Case of study 1: XBee
It is only possible to develop software in XBee using Python.

Therefore we implemented a version of the middleware com-
patible with Otsopack in Python. This implementation was
tested with the full Otsopack version successfully. However,
when measuring it problems started to arise when more than
15 requests were performed concurrently in XBee -which is
not a usual scenario-.

5.2 Case of study 2: FoxG20
Given that the Python implementation provides the core

functionality of Otsopack, the server was lighter than the
regular Android/Java SE version of Otsopack, and there-
fore it was the version used in FoxG20. FoxG20 is a more
powerful platform than XBee. In fact, it can even perform
OWL reasoning in Python using the Fuxi library 12. How-
ever, as the Table 4 shows, the reasoning process in the
FoxG20 takes a long time and therefore should be limited to
special occasions.

5.3 Case of study 3: Tablet computer
To assess the Android implementation on a mobile plat-

form, we selected the Samsung Galaxy Tab as a represen-
tative of the powerful mobiles which are becoming widely
adopted. Its reasoning performance is halfway between the
FoxG20 (seven times faster for small graphs and almost three
times faster for longs graphs with the TBox), but yet far
enough from the regular computer.

The tablet handles HTTP requests worse than the FoxG20.
Although the web framework used in Android may not be
as optimized as the Python standard one, the main cause
might be that the FoxG20 does not implement all the mod-
ules defined by Otsopack. This may sound as a sign of in-
completeness, but it is a desirable behavior for less powerful
devices which does not affect to the rest of the nodes in the
space.

5.4 Case of study 4: regular computer
To complete the evaluation, we have measured Otsopack

in a regular environment using the Java SE implementation.
Table 2(a) and Figure 2(b) summarize the data of these mea-
surements, compared with the data retrieved by the Galaxy
Tab, the FoxG20 and the XBee. As expected, the perfor-
mance is notably higher in a computer rather than in an
embedded device.

Although the time needed by the inference process varies
significantly depending on the reasoning engine used, it gen-
erally requires much less time than with any other device.
This stresses the open challenge it represents to reason in
resource constrained devices.

5.5 Discussion
The proposed TS API over HTTP is lightweight enough to

be successfully adopted by a range of devices. The response
times are small and even the XBee, which takes around 77
milliseconds and 775 if 10 clients are performing concurrent
requests, could be perfectly affordable in small or non-time
critical scenarios.

In Table 3, we present a qualitative analysis of the dif-
ferent Otsopack technologies used for the implementations.
As detailed in the table, we have tested four different archi-
tectures (Java SE, Android, FoxG20 and XBee) using two

12https://github.com/RDFLib/FuXi

Table 3: Core libraries of Otsopack
Platform

REST libraries
Semantic

version libraries
Java SE Java SE 6.0 Restlet Rdf2Go
Android Android 2.2 Restlet Sesame
FoxG20 Python 2.5 Python Std Lib Fuxi
XBee Python 2.4 Python Std Lib None

Table 4: Reasoning performance for a regular com-
puter, a tablet computer and a FoxG20 (seconds)

Device TBox ABox
Regular computer

2.787 0.045
(Sesame 2.6.4)

Samsung Galaxy Tab
17.342 0.225

(Sesame 2.4.2)
FoxG20

48.939 1.443
(Fuxi)

programming platforms (Java SE 6 and Android with Rest-
let and Python 2.4 with the Python Standard Library).

Attending to these platforms, different reasoning levels
can be achieved: Rdf2Go13 in Java SE encapsulates differ-
ent engines; Sesame14 in Android supports RDFS and per-
forms better than AndroJena15, which additionally supports
OWL; Fuxi supports OWL, and no reasoning engine could
be executed in the XBee.

6. CONCLUSION
This paper shows that the Triple Space Computing

paradigm can be adapted to constrained devices and there-
fore achieve application level interoperability. A RESTful
interface associated to a fully distributed middleware for
knowledge sharing among heterogeneous devices has been
proposed. Different implementations of such middleware for
various embedded platforms have been generated and eval-
uated. Concretely, the designed HTTP based TS API has
been used in 4 different platforms, showing the adaptability
of the proposed middleware to coordinate the operation of
hardware of different nature.

Besides, in order to emphasize the advantages of this mid-
dleware in comparison to traditional syntactic WoT solu-
tions, two scenarios which can transparently interoperate
through standard ontologies and TS have been presented.
The underlying idea is that even if for small scenarios using
semantic data may appear complex, the richer descriptions
are beneficial in the long term when more and more appli-
cations share and exploit their knowledge in spaces, in a co-
operative manner. From the point of view of the developer,
instead of using middleware to access each sensor data, they
now use a middleware through which they query a concep-
tual space for the desired knowledge, no matter which device
provides it. Still, each device can be treated as a browsable
WoT device which serves semantic content to any web ap-
plication.

For our future work, we are planning to further test the
impact and benefits of the inference process on resource con-

13http://semanticweb.org/wiki/RDF2Go
14http://code.google.com/p/android-sparql
15http://code.google.com/p/androjena

Concurrent
XBee FoxG20

Regular Samsung
requests computer Galaxy tab

1 77 (1) 17 (0) 5 (1) 223 (349)
5 392 (8) 97 (16) 8 (4) 256 (76)
10 775 (8) 174 (28) 13 (8) 372 (171)
15 - 282 (43) 18 (13) 497 (191)
20 - 375 (30) 23 (13) 661 (444)
25 - 460 (30) 30 (18) 748 (288)
30 - 540 (35) 38 (22) 929 (805)
35 - 632 (29) 38 (20) 1029 (672)

(a) Mean of the measurements taken in different devices with
the standard deviation (σ) in parenthesis (milliseconds).

(b) Averaged response time comparison for different devices
(milliseconds).

Figure 2: Response times measured in different embedded devices.

strained devices. Particularly, we aim to propose a template-
based strategy to reduce the number of times the reasoning
process is triggered in each device.

7. ACKNOWLEDGMENTS
This work has been supported by research grants TSI-

020301-2009-27 (ACROSS), funded by the Spanish Minis-
terio de Industria, Turismo y Comercio; TIN2010-20510-
C04-03 (TALIS+ENGINE project), funded by the Spanish
Ministry of Science and Innovation and IE11-316 (FUTURE
INTERNET II project), funded by the Basque Government
(ETORTEK 2011).

8. REFERENCES
[1] P. Costa, L. Mottola, A. Murphy, and G. Picco.

Programming wireless sensor networks with the teeny
lime middleware. Middleware 2007, pages 429–449,
2007.

[2] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces
principles, patterns, and practice. Addison-Wesley
Professional, 1999.

[3] A. Gómez-Goiri and D. López-de Ipiña. On the
complementarity of triple spaces and the web of
things. In Proceedings of the Second Intl Workshop on
Web of Things, WoT ’11, pages 12:1–12:6, New York,
NY, USA, 2011. ACM.

[4] A. Gómez-Goiri and D. López-de Ipiña. Assessing
data dissemination strategies within triple spaces on
the web of things. In Proceedings of the Intl Workshop
on Extending Seamlessly to the Internet of Things,
esIoT, 2012 (to be published).

[5] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From
the internet of things to the web of things: Resource
oriented architecture and best practices. In
Architecting the Internet of Things. Springer, 2011.

[6] A. G. Hernández and M. N. M. Garćıa. A formal
definition of RESTful semantic web services. In

Proceedings of the First Intl Workshop on RESTful
Design, pages 39–45, New York, USA, 2010. ACM.

[7] G. Hohpe, B. Woolf, and K. Brown. Enterprise
integration patterns. Addison-Wesley, 2004.

[8] J. Honkola, H. Laine, R. Brown, and O. Tyrkko.
Smart-m3 information sharing platform. In Computers
and Communications (ISCC), 2010 IEEE Symposium
on, pages 1041–1046. IEEE, 2010.

[9] G. Moritz, E. Zeeb, S. Pruter, F. Golatowski,
D. Timmermann, and R. Stoll. Devices profile for web
services and the REST. In Industrial Informatics, 8th
IEEE Intl Conf on, pages 584–591, 2010.

[10] L. J. Nixon, E. Simperl, R. Krummenacher, and
F. Martin-Recuerda. Tuplespace-based computing for
the semantic web: a survey of the state-of-the-art. The
Knowledge Engineering Review, 23(02):181–212, 2008.

[11] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. big’web services: making the
right architectural decision. In Proceeding of the 17th
Intl Conf on World Wide Web, pages 805–814, 2008.

[12] Z. Shelby, K. Hartke, C. Bormann, and B. Frank.
Constrained application protocol (CoAP).
https://datatracker.ietf.org/doc/draft-ietf-core-coap/,
2012.

