Assessing data dissemination strategies within Triple Spaces
on the Web of Things

Aitor Gémez-Goiri, Diego Lépez-de-Ipifia
Deusto Institute of Technology - DeustoTech
University of Deusto
Avda. Universidades 24, 48007 Bilbao, Spain
{aitor.gomez, dipina}@deusto.es

Abstract—The upcoming of the Web of Things initiative has
improved the integration of Internet-connected devices through
the standard HTTP protocol and other web techniques. Un-
fortunately, it usually defines the data shared by these devices
in a syntactic level, showing a lack of expressiveness. During
the last decade, the Semantic Web (SW) has aimed to solve
these problems by adding logic to the Web to make it machine-
understandable and by therefore enhancing the interoperability
of the applications using it. The SW is used in the Triple Space
Computing paradigm, which proposes a blackboard model
where semantically described knowledge is shared between
different devices in a completely RESTful, and consequently
WoT compliant, manner. This paradigm’s shared blackboard
can be implemented using many strategies, from centralized to
completely distributed. In this work, we compare and analyze
the behaviors of these two extreme cases in several simulations
which try to represent common IoT scenarios. Finally, we
propose an improvement of the completely distributed strategy
by enabling the gossiping between devices.

Keywords-Triple Space Computing; HTTP; Semantic Web;
Internet of Things;

I. INTRODUCTION

In recent years, the Web of Things (WoT) [1] has shown
an emerging popularity for the integration of smart things.
By embedding web servers into them to offer their capa-
bilities using RESTful services, they can interoperate not
only with other WoT devices, but also with other traditional
web applications. As other RESTful compliant approaches,
WoT usually represents these capabilities using user centered
formats such as JSON and HTML, which purely describe the
information at a syntactical level.

To overcome the limitations of this syntactic web a
promising step would be to bring the WoT closer to the
Semantic Web (SW) [2], which proposes to add logic
to the web content. The SW aims to create a machine
understandable web, where the synergy between agents not
expressly designed to work together is promoted, improving
the interoperability of the applications built on top of this
enriched web.

Triple Space Computing proposes a blackboard model
which uses the Semantic Web to describe the information
shared. It has also been proved to be a completely RESTful
approach [3] and therefore WoT compliant [4]. The way

in which data is written and read in the space directly
affects the performance of the solutions built on top of
TS. In this work, we assess both distributed and centralized
dissemination strategies for HTTP based TS running on IoT
devices. In addition, we propose a gossiping based strategy
which attempts to overcome their defects.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 describes Triple
Space Computing. Section 4 presents the dissemination
strategies. Section 5 describes how the experiments were
conducted. Section 6 examines the results of the simulations.
Finally, Section 7 concludes and outlines the future work.

II. RELATED WORK

In the WoT, different solutions have considered using
semantics to enrich the data definition in a machine process-
able manner. Generally, these solutions embed the metadata
in the HTML contents [5] returned by the Internet connected
objects and are used to enhance the findability of the data
by search engines, using microdata, microformats or RDFa.
Other full semantics formats such as RDF or N3 can also be
used to represent each of the resources shared by an object.

In any case, TS goes beyond simply returning semantic
data in embedded web servers and proposes a blackboard
model which access to a shared space, where the knowledge
is read and written, using some coordination primitives.
These primitives are RESTful compliant and therefore can
be easily mapped into HTTP operations. This model offers
a high degree of autonomy to the upper applications using
it. Although, to the best of our knowledge no TS solution
has been designed for the needs of the Internet of Things,
other TS or tuple spaces semantic solutions have presented
different strategies to distribute the space over the nodes in
the most convenient way.

In centralized tuple spaces approaches we can find so-
Iutions which mainly focus on offering access to a space
stored in a unique machine. This access is carried out by
the clients using different methods which encapsulate the
coordination primitives as in Semantic Web Spaces [6].
Remarkably, Smart M3 middleware proposes an architecture
where the called Semantic Information Brokers (SIB) store

the information and perform reasoning process on behalf
of the clients or Knowledge Processors (KP). Unfortunately,
works where more than a SIB is used to store the information
has not been presented yet, making it “de facto” centralized.

TripCom! uses a hybrid solution where information is
distributed on an overlay network made up of different
kernels using a Distributed Hash Table solution. Each kernel
stores some triples and knows where the rest of them are
stored by checking this routing table. The clients need to
know one of these kernels to address their queries through
it to the rest of the kernels. TripCom was conceived to
store a huge amount of RDF triples taking special care of
the scalability issues, but it was not designed to be run on
devices with constrained resources.

Other tuple spaces solutions have used negative broad-
casting strategy [7], [8], [9]. With this strategy, the writings
are performed locally and the queries are broadcasted to all
the reachable nodes which belong to the space. As can be
seen, this strategy ensures that all the possible answers will
be received, but at a highly resource consuming cost.

Finally, although they cannot be considered tuple space
solutions, distributed semantic repositories (DSR) share
some common data distribution problems with semantic
tuple spaces. In these repositories, some applicable strategies
such as flooding based [10], DHT based [11], overlay based
[12], gossiping [13] and swarm-based [14], [15] have been
presented. Unfortunately, the analysis carried out in the DSR
field are not applicable since they diverge in the following
aspects:

« The machines used in DSR are able to manage bigger
amount of data than the resource constrained platforms
used in IoT scenarios.

o The nature of the IoT nodes is more dynamic than the
ones used in DSR and as a result they are less reliable.

So, considering all the strategies presented, how could
we choose the most appropriate one for each Internet of
Things environments? To answer the question, we present a
thorough analysis in the following sections.

III. TRIPLE SPACE COMPUTING

The Triple Space Computing paradigm defines reading
and writing primitives to access to a common space where
semantic knowledge is held. By reading and writing in such
a decoupled manner, three levels of autonomy are reached:
location autonomy (information providers and consumers
are independent from where the data is stored), reference
autonomy (nodes do not need to know each other) and
time autonomy (they communicate asynchronously). Ad-
ditionally, the use of the RDF specification brings data
schema autonomy, which makes the data independent of
nodes’ internal data schema. However, TS-based solutions
are dependent on the ontology which defines the exchanged

I TripCom (IST-4-027324-STP, www.tripcom.org)

predicate
(URD)
ontprefix:hates
ontprefix:hasAge

object
(URI | bnode | literal)

http://triple-airlines.com
"15"~~xsd:int

subject
(URI | bnode)

http://gomezgoiri.net/a
http://gomezgoiri.net/a

http://gomezgoiri.net/a ?p ?0

Figure 1. Basic composition of a RDF triple, two examples and a wildcard
based template where both examples match. ontprefix is an alias, known as
prefix in most Semantic languages, for the beginning of an URI.

information or knowledge, so it is advisable the use or
extension of standard or widely used ontologies in order
not to isolate the application developed on top of TS.

The primitives defined in TS are write, read, take and
query. The first one allows writing RDF Graphs, which is a
set of RDF Triples (see Figure 1) identified by an URI,
in a given space. The read primitive returns one of the
graphs written into the space matching a template. The take
primitive returns the same as the read, but extracting the
graph from the space. Finally, the query returns all the RDF
triples in a space which match a given template, no matter
to which Graph they belong.

The template used in these primitives can be as simple as
a triple pattern with wildcards (e.g. ?s) or as complex as an
SPARQL query. In the simulations the first ones were used.

As was previously stated TS is completely compliant
with the RESTful style. The resources (an space or a
graph) can be accessed using their identifying URL and
the appropriate HTTP verb, to create (HTTP POST/write),
remove (HTTP DELETE/take) or retrieve (HTTP GET/read
or query) semantic content. The use of HTTP brings huge
benefits in terms of integration and adoption ease in new
platforms.

Although in this work we focus on a key aspect of this
implementation, i.e. how the data is spread among the differ-
ent objects belonging to a space, it should not be forgotten
the underlying HTTP TS implementation, which guides the
design of the strategies and supports the simulation process.

IV. DATA DISSEMINATION STRATEGIES

The tuple space-based computing approach consist of
different elements (agents or nodes) which share information
in a common space. This space can be centralized, substan-
tially simplifying the application architecture and easing the
reasoning process in semantic approaches.

Nevertheless, due to the distributed nature of the Internet
of Things environments where the data is generated and
consumed by many different devices, distributed approaches
need to be considered. The peer-to-peer paradigm (P2P)
is a prominent architecture to search for distributed data
repositories which is usually divided in two main categories:
unstructured and structured.

In structured P2P, a hash function is used both to deter-
mine where the content is stored and where to route a query.

It has not been considered for the analysis because it needs
a costly process of reindexing terms whenever a peer joins
or leaves the network, which may happen too frequently in
IoT environments.

In unstructured P2P, each peer is connected to a limited
number of peers, usually neighbors. The simplest unstruc-
tured approaches are the flooding-based ones, where both
the queries (negative broadcasting) or the data to be queried
(positive broadcasting) are spread among all the peers.
To improve these approaches two common solutions can
be used: group the nodes with similar interests (Semantic
Overlay Networks) or allow them to know about the content
shared by others (gossiping). We have selected the latter one
to compare it with the negative broadcasting strategy.

In the following sections the following terms will be
employed: the number of total requests (r), the period of
time the strategy is evaluated (f), the given set of queries
(Q, where each query is g;), the writing frequency (wy) and
the nodes belonging to an space (N, where each node is n;).

A. Centralized

The centralized strategy has a node which stores all the
graphs periodically sent by the rest of the nodes. When a
node wants to query the space, it directly addresses the query
to this central node’s web server. In sensor networks where
data is continuously generated, the writing frequency of the
sensed data is a vital parameter. With a high frequency the
data stored in the server will be updated more frequently
and therefore more accuracy will be achieved, but at the
same time, the network overload will be severely affected.
In other words, the writing frequency is a trade-off between
the data freshness and the network overload (measured by
the total requests):

r=Q| +wst.(IN|-1) (D

Centralization has been traditionally used in IoT scenarios
to prevent the objects from being directly requested and
therefore save energy. Besides, it can be used in conjunction
with a distributed strategy for those cases where devices
cannot handle the Semantic Web (i.e. a fully IP-enabled
gateway could represent several objects within its Zigbee
network and yet communicate with other IP-enabled objects
in a distributed fashion). In any case, we focus on maxi-
mizing embedded devices’ capacities by using the Semantic
Web, envisioning a world populated by autonomous devices
which can cooperate between them. As a consequence, the
dependency entailed by a unique central machine does not
fit many of such scenarios.

B. Negative broadcasting

Negative broadcasting implies that all write operations
are executed locally at the node, but all read and query
operations are propagated to other nodes of a space. It
suits perfectly to use cases where nodes create and manage

their own information, such as a node in a mobile phone
maintaining a user profile or embedded sensors managing
their own generated data. In contrast with the centralized
strategy, the HTTP requests generated do not depend on the
writings, but it generates many request per query.

r=|QL(N|-1) @)

Although this strategy ensures that all the last available
data will be retrieved, the main concern for its adoption in
the IoT is that the network activity directly depends on the
scale. As IoT scenarios are usually populated by a large
number of nodes, each node will have to handle any request
in the space no matter if it is relevant for them or not. As
a result, the high network activity directly affects to the
autonomy of the Internet-enabled devices.

C. Gossiping based strategy

Gossiping is used to improve broadcasting-based strate-
gies, e.g. negative broadcasting, by reducing the amount of
receivers for a given query requests. Ideally, the request
should be transmitted only to the nodes which can answer
something to the given request (i.e. the nodes having relevant
content). Unfortunately, it is impossible to perfectly predict
these nodes without having all the data they store locally
available. As a result, the key for a successful gossiping
strategy is to share just as much information as needed to
predict with a admissible degree of accuracy and recall.

To deduce the information useful to predict the relevant
nodes without sharing too much information between the
nodes in TS, we have considered scenarios populated by
mobile devices and sensor nodes as the ones which typically
form IoT scenarios. Mobile devices normally share data like
the user profile which is defined using a few ontologies to
describe information such as users preferences which seldom
change, whereas the sensors are constantly generating new
instances of the same ontology. In both cases, the data
shared by each node is described according to one or few
vocabularies or taxonomies. At this point, is important to
define the TBox and ABox following Nardi and Brach-
man’s definition [16]. TBox contains the knowledge which
describes general properties of concepts or terminology (e.g.
the type of devices or the elements they have) and ABox
contains knowledge that is specic to the individuals of the
domain of discourse (e.g. the mobile brand is HTC or the
sensed temperature is 3°C).

Considering spaces of nodes which know all the TBox
used in the space is therefore plausible because it does not
change too often and involves sharing much less information
than the ABox. How the ontologies are obtained is not
considered for the lack of simplification, but it will imply
just a new request from the node which does not know a
vocabulary to the one which knows it.

According to this situation, we have designed a strategy
where the nodes gossip the classes of concepts (rdf:type)

shared by other nodes. With these information and the TBox,
each node can check whether the information which matches
certain templates is susceptible of being stored in other
nodes. Another possibility would be to gossip the predicates,
or the most popular subjects, but sharing the type of concepts
and having the TBox information, these can be predicted
with less accuracy, but also with less information being
shared by the nodes (the amount of predicates is usually
greater than the amount of classes in an ontology).

Given a template which has a predicate that according
to the TBox relates a concept of the class A with another
concept, the template will be transmitted to nodes having
instances of the class A, as they are more likely to use
this predicate in their graphs. For instance, consider that
the following template is queried: ?s ssn:observes dbpe-
dia:CO2. Since according to the SSN ontology, which
will be presented later on, only an instance of the class
ssn:Sensor observes something, the querying node will send
the template to the nodes which have instances of the class
ssn:Sensor.

In addition, if the node can perform a reasoning process,
unstated knowledge which can detect more relevant nodes
can be inferred. For example, a node which has many
instances of the class C, may also use the predicate if C is
a subclass of A. Thanks to the reasoning, we can discover
that the node has knowledge of the type A and therefore may
be relevant (in the example, instances of ssn:Sensor class’
subsclasses such as Accelerometer).

So, if we refer to the algorithm shown in the Algorithm 1
as the n, function, using it and the TBox information, we
have the following equation to calculate the total amount
of HTTP requests needed. In the worst case scenario, the
function will return n-1 and we will have the negative
broadcasting case. The problem has been simplified by
considering that the TBox information does not change and
therefore the gossiping request will only be needed the first
time each node initiates a query. Each node will need to ask
to the rest of the nodes (|N| — 1) only if it tries to initiate a
query (i.e. at maximum |N| nodes will initiate this process,
having |N|.|N — 1| as the worst case for g).

r=> n.(q)+g 3

V. SIMULATIONS

We opted for a simulation study to compare the perfor-
mance of the strategies described in the previous section. We
anticipated to see poor scalability of the Negative Broadcast-
ing and Centralized strategies for query and write intensive
scenarios respectively. Moreover, we expected a substantial
improvement by complementing Negative Broadcasting with
a Gossiping mechanism which could refine which nodes
should be queried.

Algorithm 1 Algorithm to deduce the list of relevant nodes

ungossiped = getNotGossipedNodes ()
if len(ungossiped)>0:
for uni in ungossiped:
ask to the "uni” node the types (classes)
of instances it has
gossiped_base[uni] = gossipClassesFrom(uni)

relevant_nodes = []
for ni in N:
if template.object in gossiped_base[ni]:
relevant_nodes.append(ni)
elif template.predicate != WILDCARD:
if according to TBox and gossiped_base
"ni” has instances of any class in the
range of template.predicate’s adds it
pr = range(tbox, template.predicate)
if gossiped_base[ni].hasInstancesOfClass(pr):
relevant_nodes.append(ni)
else:
we have not enough information to decide
whether the node is not relevant
relevant_nodes.append(ni)

Table I
CONFIGURATION PARAMETERS.

Name
Network Size
Number of writes

Description

The number of nodes in a network.
Amount of write primitives performed dur-
ing the simulation period.

Amount of query, read or take primitives
performed during the simulation period.

Number of queries

A. Methodology

By varying the configuration parameters presented in the
Table I a wide range of scenarios could be simulated. As
we were assessing objects with IP connectivity, the topology
considerations have been omitted.

Since we wanted to simulate the Triple Space Computing
paradigm over HTTP, the communication between the nodes
was point to point and the data exchanged were RDF Triples.
The node discovery process was ignored since it will show
similar additional overhead for each strategy. It can be
considered transversal to what was being measured.

To represent the data managed by each node, we first
considered using LUBM?, a synthetic benchmark. Unfortu-
nately, it creates instances from the same few classes for
each node, making all the nodes have the same TBox. In
our opinion, this does not represent faithfully Internet of
Things scenarios where there exist heterogeneous devices
which therefore share disparate information.

In our second attempt we sought a dataset which could
represent this heterogeneity. The Semantic Sensor Network
Ontology (SSN)* was created by the W3C Semantic Sensor
Network Incubator Group to represent diverse sensor net-

Zhttp://swat.cse.lehigh.edu/projects/lubm/
3http://www.w3.0rg/2005/Incubator/ssn/X GR-ssn-20110628/

Table II
CHARACTERISTICS OF THE DEVICES USED IN THE EVALUATION AND
THE TIME NEEDED BY THEM TO RESPONSE TO CONCURRENT HTTP
REQUESTS (MILLISECONDS).

XBee Gateway FoxG20
Processor - 400Mhz Atmel ARM9
RAM 8 MB 64 MB
Concurrent Mean Std dev Mean Std dev
requests (o) (o)
1 77 1 17 0
5 392 8 97 16
10 775 8 174 28
15 - - 282 43
20 - - 375 30
25 - - 460 30
30 - - 540 35
35 - - 632 29

work environments. The ontology has been used in many
different projects and scenarios to semantically describe the
data provided by heterogeneous sensors. Specifically, we
used the two publicly available meteorology and environ-
mental quality datasets based on the SSN ontology, provided
by the University of Utah* and by the University of Deusto’
respectively. These datasets contain descriptions about the
sensing stations and the data sensed by them during certain
periods, the analogy between meteorology stations which
have different sensors and the IoT devices is reasonable. The
dataset has been adapted to provide just one measure of each
sensor at each moment (to emulate the storage restrictions
from embedded devices) and to use as many stations as
nodes has the network (depending on the network size).

We simulated the environments using SimPy®, a process-
based discrete-event simulation language for Python. To ac-
curately simulate the time needed by each node to provide a
response, we considered measures taken from real embedded
web servers running on an IP gateway’ for XBee sensors’®
and on a FoxG20° [17]. Table II shows the measures used
for the parametrization.

B. Performance Metrics

We evaluated the three strategies selected against each
other regarding the metrics described below. These metrics
are intended to capture the fundamental properties relevant
to this comparison.

e Precision: the fraction of nodes which answered rele-
vant results (those responses which were not not found
responses).

“http://wiki.knoesis.org/index php/LinkedSensorData
Shttp://dev.morelab.deusto.es/bizkaisense
Shttp://simpy.sourceforge.net
http://tinyurl.com/connectportx2
8http://tinyurl.com/xbee-sensors
9http://www.acmesystems.it

Table III
TEMPLATES USED IN THE EVALUATION OF THE GOSSIPING APPROACH.
Name Template
tl ?s rdfitype ssn-weather:RainfallObservation
2 ?s rdf:type ssn:Observation
t3 ?s ssn:hasLocation ?p
t4 ?s wsg84:long 7p
t5 ?s ssn:observedProperty ?0
t6 ?s smart-knife:hasMeasurementProperty Value 70
t7 bizkaisense:ABANTO 7p 70

e Recall: the fraction of relevant answers that are re-
turned.

e Response time: the average response time needed to
obtain the response to a query, read or take primitive.

VI. RESULTS
A. Gossiping approach

The precision and recall of the gossiping algorithm has
been evaluated for a network size of 159 nodes issuing the
query template shown in the Table III. In average, the nodes
have instances belonging to 6 different classes (0=4) from
a total 87 distinct classes in the space. When these classes
are expanded with a reasoning process, the nodes store 20
different concepts from a total of 113 classes in the space
(o=4).

The Table IV shows the recall and precision obtained with
the different templates. The first template shows a perfect
prediction for these classes detected in the instances of the
TS. The second shows how if the data consumer expands
the gossips through a inference process but the data provider
does not reason over its content, the provider is not going
to be able to answer a concept it implicitly has. From the
third to the sixth template, they define a predicate whose
range is not explicitly stated in the gossiping. When the
gossiping is expanded, we obtain high precision for the first
ones, with a great recall in the fifth one. The sixth one,
returns two possible nodes while just one holds a triple using
this predicate. Finally, the seventh template shows the main
limitation of the proposed template: a low precision for a
template where no predicate is defined. This is due to the fact
that with the TBox information gossiped ABox information
cannot be inferred. To overcome this limitation the most
popular and long-lasting URIs could be also transmitted
during the gossiping process.

At this point, it is worth noticing the overhead that the
reasoning process can introduce in resource constrained
devices. While the XBee gateway is not able to reason, the
FoxG20 took about 50 seconds to load the TBox information
from SSN and about 1.5 seconds to load each RDF graph
with one measure extracted from the dataset used. The
energy consumed during the reasoning process is similar to
the consumption measured during a period with continuous
network activity (see Figure 4).

Table IV

GOSSIPING ALGORITHM’S PRECISION AND RECALL.

10000

8000 -

Communication efficiency

6000 -

4000

»—= centralized
+--+ negative broadcasting
+ -¢ gossiping

Best possible case

No inference Inference
Template | Precision Recall | Precision Recall
t1 1.0 1.0 1.0 1.0
2 1.0 1.0 0.0 0.0
t3 1.0 1.0 1.0 1.0
t4 0.0 0.0 1.0 0.647
t5 0.0 0.0 1.0 0.99
t6 0.0 0.0 0.5 1.0
t7 0.006 1.0 0.006 1.0
800 F‘kesponse time u;ing real device;
*—= foxg20 e -

700 | + -+ xbee

w IS w)

=] =] =] <]

S S S =]
T T T T

Average response time (ms)

N

=3

=3
T

100

o 500 1000 1500 2000
Number of queries

Figure 2. Overhead generated by negative broadcasting in real devices for
different amount of queries in one minute.

Fortunately, the TBox loading needs to be done just once
and the reasoning over the gossiped information can be done
before the first TS primitive is spread among the nodes. The
devices unable to reason could use an external reasoning
service to obtain the expanded gossiping even if they are
unlikely to initiate queries.

B. Strategies performance in real devices

This experiment simulated a network of 100 nodes pop-
ulated by nodes parametrized to behave as XBee gateways
or FoxG20 embedded devices (see Table II).

The response time (see Figure 2) exposes a worse per-
formance for the XBee, which in any case can be able to
answer more than 1000 queries per minute before it starts
rejecting responses. This upper limit makes feasible most of
the scenarios which could be conceived with them.

C. Network overload

An elemental mechanism to increase the autonomy of
the devices is to reduce their activity by minimizing the
number of request they have to handle. This is graphically
represented for the FoxG20 platform by the Figure 4, where
the energy consumption jumps to 25% when both it reasons
or it handles multiple requests.

Number of requests

2000

0 20 40 60 80 100 120
Number of nodes

Figure 3. Overhead generated by the different strategies measured in the
number of HTTP request needed to answer a query.

~
[=]
(=]

@
=]
(=]
T
L

[0

o

o
T

N w

g & &

(=] (=] o
T T T

Average power consumption (mW)
5
o

Period with Reasoning period

continuous requests

Inactivity
period

Figure 4. Energy consumption for FoxG20 during different activity periods
(miliwatts).

To measure the variations in the system load as the
network size increases, we generated networks of 2, 10, 50
and 100 nodes. The simulation lasted one minute (r=60000)
and had a writing frequency of one second (w;=1000) and
100 queries which employed the template #/.

In the Figure 3 a linear increment is appreciated as the
network size increases for all the strategies. The central-
ized strategies directly depend on the writing frequency
which can drop depending on the necessity of freshness in
the scenario. The negative broadcasting and the gossiping
strategy on the contrary, are proportional to the number
of queries in the given time. Even if 100 queries may be
too many for a minute in some scenarios, the figure shows
how the negative broadcasting slope is the most pronounced
one, being the worst strategy even for just few nodes. The
gossiping strategy considerably reduces the HTTP requests
needed by the broadcasting-based strategy. In the Figure 3,
this reduction adjusts to the best possible case, but depending
on the precision of the algorithm for the given query, it can
be situated anywhere between the negative broadcasting and
the best possible case.

VII. CONCLUSION

This paper assesses the adoption of different data dissem-
ination strategies within an HTTP based Triple Space Com-
puting solution. Centralized and fully distributed strategies
have confirmed the poor scalability predicted. These cases
can be improved using a gossiping strategy which shares the
classes of the instances hold by each node of the space.

The simulations carried out together with the response
times obtained from real devices confirm the need of the
gossiping approach since the negative broadcasting quickly
floods the most simple ones. This behavior is particularly
harmful for IoT devices, since their energy consumption
rises when requests are handled.

For our future work, we aim to refine the proposed
gossiping strategy to increase the precision for those cases
where no predicate is defined in the template. Furthermore,
apart from using real datasets and response times from
real IoT devices in the simulations, specific scenarios from
the literature could be simulated to obtain more accurate
performance results.

ACKNOWLEDGMENT

This work has been supported by research grants
TIN2010-20510-C04-03 (TALIS+ENGINE project), funded
by the Spanish Ministry of Science and Innovation, and
IE11-316 (FUTURE INTERNET II project), funded by the
Basque Government, ETORTEK 2011.

REFERENCES

[1] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the
internet of things to the web of things: Resource oriented
architecture and best practices,” in Architecting the Internet
of Things. Springer, May 2011.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic
web,” Scientific American, vol. 284, no. 5, p. 3443, 2001.

[3] A.G. Hernandez and M. N. M. Garcia, “A formal definition of
RESTful semantic web services,” in Proceedings of the First
International Workshop on RESTful Design. New York, NY,
USA: ACM, 2010, p. 3945.

[4] A. Gémez-Goiri and D. Lépez-de-Ipifia, “On the complemen-
tarity of triple spaces and the web of things,” in Proceedings
of the Second International Workshop on Web of Things. New
York, NY, USA: ACM, 2011, p. 12:112:6.

[5] S. Mayer and D. Guinard, “An extensible discovery service
for smart things,” in Proceedings of the 2nd International
Workshop on the Web of Things. San Francisco, CA, USA:
ACM, Jun. 2011.

[6] L. Nixon, O. Antonechko, and R. Tolksdorf, “Towards seman-
tic tuplespace computing: the semantic web spaces system,”
in Proceedings of the 2007 ACM symposium on Applied
Computing, 2007, p. 360365.

[7] R. Krummenacher, D. Blunder, E. Simperl, and M. Fried,
“An open distributed middleware for the semantic web,” In-
ternational Conference on Semantic Systems (I-SEMANTICS),
2009.

[8] A. Murphy and G. Picco, “Transiently shared tuple spaces for
sensor networks,” in Proc. of the Euro-American Workshop on
Middleware for Sensor Networks, 2006.

[9] A. GOmez-Goiri, M. Emaldi, and D. Lépez-de-Ipifia, “A
semantic resource oriented middleware for pervasive environ-
ments,” UPGRADE journal, vol. 2011, Issue No. 1, pp. 5-16,
Feb. 2011.

[10] A. Y. Halevy, Z. G. Ives, P. Mork, and 1. Tatarinov, “Piazza:
Data management infrastructure for semantic web applica-
tions,” in Proceedings of the 12th International Conference
on World Wide Web, 2003, pp. 556-567.

[11] M. Cai and M. Frank, “RDFPeers: a scalable distributed RDF
repository based on a structured peer-to-peer network,” in
Proceedings of the 13th International Conference on World
Wide Web. New York, NY, USA: ACM, 2004, p. 650657.

[12] C. Doulkeridis, K. Norvag, and M. Vazirgiannis, “DESENT:
decentralized and distributed semantic overlay generation in
P2P networks,” Selected Areas in Communications, IEEE
Journal on, vol. 25, no. 1, p. 2534, 2007.

[13] J. Zhou, W. Hall, and D. D. Roure, “Building a distributed
infrastructure for scalable triple stores,” Journal of Computer
Science and Technology, vol. 24, no. 3, pp. 447-462, 2009.

[14] H. Mhleisen, A. Augustin, T. Walther, M. Harasic, K. Tey-
mourian, and R. Tolksdorf, “A Self-Organized semantic stor-
age service,” 2010.

[15] P. Obermeier, A. Augustin, and R. Tolksdorf, “Towards
swarm-based federated web knowledgebases,” Electronic
Communications of the EASST, vol. 37, no. 0, 2011.

[16] D. Nardi and R. Brachman, “An introduction to description
logics,” The description logic handbook: theory, implementa-
tion, and applications, pp. 1-40, 2003.

[17] A. G6émez-Goiri, P. Ordufia, D. Ausin, M. Emaldi, and
D. Lépez-de-Ipifia, “Collaboration of sensors and actuators
through triple spaces,” in IEEE Sensors 2011, Limerick,
Ireland, 2011.

