
On the complementarity of Triple Spaces
and the Web of Things

Aitor Gómez-Goiri
Deusto Institute of Technology - DeustoTech

University of Deusto
Avda. Universidades 24, 48007

Bilbao, Spain
aitor.gomez@deusto.es

Diego López-de-Ipiña
Deusto Institute of Technology - DeustoTech

University of Deusto
Avda. Universidades 24, 48007

Bilbao, Spain
dipina@deusto.es

ABSTRACT
The Internet of Things (IoT) enables communication among
real-world things and devices through Internet. So far, IoT
research has focused on allowing such communication through
different protocols and architectures. Some of these architec-
tural approaches are Web of Things (WoT) and Triple Space
(TS) which are both resource oriented architectures. This
work analyses and compares both approaches and outlines
the scenarios in which they will be more useful. Particu-
larly, it outlines how some of the drawbacks of WoT in the
discovery and cooperation aspects may be complemented by
integrating with TS.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.11 [Software Architectures]: Patterns—blackboard

Keywords
triple space, web of things, resource oriented architecture

1. INTRODUCTION
In recent years, Internet of Things (IoT) is becoming a

reality due to the increasing number of everyday objects
containing embedded devices. While in the beginning more
effort was put on those devices’ connectivity issues, material-
ized in the spread of technologies such as Zigbee, 6LoWPAN
or Bluetooth, nowadays the community is focusing on higher
levels of the architecture. These architectures define models
in which the applications are built using the capabilities of
these objects. Two of these models are Web of Things and
Triple Space.

On the one hand, Web of Things (WoT) is an approach
which fully integrates real-world objects and devices in the
web by embedding web servers into them and adopting the
REST architectural style to provide information on demand.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT 2011, June 2011; San Francisco, CA, USA
Copyright 2011 ACM 978-1-4503-0624-9/11/06 ...$10.00.

This style is highly decoupled because it focuses on access-
ing in a simple way to the data itself (i.e. HTTP verbs
and XML/JSON as output) and not in complex protocols of
communication between objects, making the services reusable
and easily understandable by developers.

On the other hand, Triple Space Computing (TS) is a
paradigm where Semantic Web techniques are used to de-
fine the knowledge which is exchanged using a distributed
shared space. The idea of sharing information through a
common space corresponds to the blackboard model, used in
context aware environments, which makes each process very
autonomous from the rest. The Semantic Web defines the
information in a very expressive and machine understand-
able way (new data can be even inferred), and it has also
been widely adopted in context-aware environments. Thus,
TS can be seen as the conjunction of two well accepted data
distribution and modelling standards.

Both WoT and TS can be considered resource oriented
solutions since they put emphasis in giving access to data
resources. However, their differences make also them suit-
able for different purposes. While TS enables expressive
queries, dynamic discovery and non human-mediated coop-
eration among objects, WoT adopts the scalable properties
of the World Wide Web and it is entirely based on web stan-
dards. In this paper we explain how to take advantage of
both approaches, bringing together the best of both worlds,
and illustrate the benefits of their alignment in a real sce-
nario.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 briefly explains our TS
solution, used as a reference for the comparison with the
WoT. Section 4 examines the similarities and the differences
between WoT and TS, and defines how to map both worlds.
Section 5 outlines a scenario where both solutions could be
useful. Finally, Section 6 concludes and outlines future work.

2. RELATED WORK
There are two main architectures to enable the coopera-

tion between objects within IoT: service oriented (SOA) and
resource oriented architectures (ROA). Both architectural
approaches, represented by WS-* and REST styles, were
adopted from the World Wide Web area, where their ad-
vantages and disadvantages have been extensively discussed
[17]. ROA is mainly a simpler decoupled solution which
is centred on sharing and managing data resources, while
SOA enables the encapsulation of functionalities offered as
services and their combination in a more synchronous way.

DPWS is a SOA incarnation which defines a subset of
WS-* to make it suitable for resource-constrained devices.
DPWS is claimed to be used in industrial environments. Its
most remarkable features are that it proposes: decentral-
ized multicast-based discovery, secure message transmission,
subscription and event notifications. Moritz et al. compared
DPWS with the REST approach coming to the conclusion
that DPWS can be restricted to be fully compatible with
the RESTful style, and still covering some missing features
of the RESTful approach such as eventing and discovery
[13].

Within resource oriented architectures, the Web of Things
(WoT) community encourages the use of REST-based solu-
tions embedding web servers in daily objects [9]. This in-
herits the simplicity of RESTful based services making it
easier for developers to build mashups with other common
REST services [8]. Ostermaier et al. [15] proposed a frame-
work to facilitate the integration of different blocks of web
enabled sensors and actuators. Considering network con-
nected objects and their capabilities as dynamic and contin-
uous source of information brings another interesting possi-
bility, i.e. sharing them through social networks [7].

Another ROA solution is Triple Space (TS). TS comes
from the tuplespace coordination model where the interac-
tion between processes is performed by writing and read-
ing data structures in a shared space. In mobile environ-
ments, the tuplespace adoption has probed to yield to sim-
pler, cleaner and more reusable designs [4, 3].

Several solutions have been proposed to bring the seman-
tic web in the tuplespace paradigm [14], including those
which follow TS paradigm [5] which simply uses RDF triples
as shared data structures. This shared information is pro-
cessable by the machines since it is modelled as instance data
of previously agreed semantic ontologies [2]. In TS there are
different strategies that have been used to distribute the se-
mantic data through the nodes which form a space, but to
the best of our knowledge this kind of solution has never
been specifically designed and implemented to use mobile
and embedded devices as fully-fledge peers of these spaces
and not only as simple clients apart from in our middleware
[6]. Doing so, we can define very autonomous processes (see
section 4.1.6) even in constrained environments.

To sum up, TS explores a new path which uses coordina-
tion primitives inherited from tuplespace model in a shared
semantic space. TS shares similarities with other ROA so-
lutions such as WoT, simpler to use than SOA ones [17].

3. A TRIPLE SPACE SOLUTION FOR IOT
Our TS solution, namely OtsoPack and described in detail

in [6], proposes a distributed shared semantic space between
nodes which join it. Published semantic data is grouped into
graphs which are made up of RDF triples. Nodes generally
write locally (except when another one has claimed to be re-
sponsible of a piece of knowledge) and spread their queries
to the rest of the nodes which belong to the space. This
approach fits perfectly with very dynamic spaces where the
nodes can change of context frequently (e.g. mobile phones)
and a node is usually responsible for the information it man-
ages (e.g. a user profile on mobile phones or sensed data in
an embedded device).

The most important primitives of our solution are write,
query, readand take. Write adds new knowledge to a space
writing together the given triples in a new RDF graph and

Figure 1: Proposed distributed TS solution.

returning its identifying URI. Query returns the triples which
match a given template conceiving the space as a whole no
matter to which graph they belong to. Read and take return
a whole RDF graph which can be selected by its identify-
ing URI or by a template. In the second case, the graph is
returned if it contains at least a triple which matches the
template. Take differs from read because it also subtracts
the returned graph from the space.

The template used in these primitives can be as simple as
a triple pattern with wildcards (e.g. ?s) or as complex as
an SPARQL query, depending on what a node is capable of
processing. To make SPARQL queries understandable to all
the nodes, the QueryMultiple primitive translates them into
several wildcard templates. For instance, possible responses
for the template ?s rdf:type ismed:Device, which searches for
devices in an environment, are:

prefix1:sunspot1 rdf:type ismed:Device
prefix1:xbee5 rdf:type ismed:Device
prefix1:nokia96 rdf:type ismed:Device

Two versions of the proposed architecture have been im-
plemented: a fully capable one named OtsoSE and another
one more suitable for mobile devices named OtsoME. Be-
sides, information provided by embedded devices has also
been fully integrated in the space created by these nodes
using the solution described in section 4.2.

4. WOT AND TS
In this section, the strengths and weaknesses of both TS

and REST approaches will be discussed and compared. Then,
their compatibility is shown by proposing two ways to use
WoT solutions inside a TS environment and viceversa.

4.1 Comparison
The similarities and differences between WoT and TS which

are summarized in the Table 1 are detailed below.

4.1.1 Architecture
Both approaches are based on resource oriented architec-

tures. WoT uses the REST architectural style, where the
contents are directly addressable by URLs to manipulate
them, and TS creates, removes and modifies RDF triples or
graphs, i.e. sets of interlinked triples, in a space formed by
peers in a P2P network.

Despite of these similarities, WoT uses a client-server ar-
chitecture where each client has to know the URL where
to address its operations, while TS relies on a distributed
shared memory which makes each process within a space
completely autonomous. In TS, a node does not need to
know where information is stored, just the URI of the space
it wants to query. Furthermore, the OtsoPack solution is

Table 1: Comparison between WoT and TS (Ot-
soPack) resource-oriented approaches

WoT TS (OtsoPack)
Architecture ROA & C/S ROA & P2P
Communication HTTP Jxta
Operations HTTP verbs TS primitives
Format HTML, JSON &

XML
RDF (NTriples)

Developer aid Less expressive
data & specific
use

Expressiveness &
uniform API

Coupling Low Very low
Discovery Bad Very good
Scalability Good Bad
Semantics Microformats Full

fully distributed and conceived not to depend on any cen-
tralized, previous known, intermediary server.

4.1.2 Communication protocol
Our TS solution currently uses Jxta1, a language and plat-

form independent Peer to Peer protocol, to interconnect the
nodes and manage the groups (spaces) where they belong.
Unfortunately, the mobile version relies in a Jxta gateway
called Rendezvous to propagate the messages to other nodes
of the group, making some previous configuration necessary
and potentially creating a bottleneck. Anyway, some TS im-
plementations such as TripCom2 rely on HTTP, and one of
our next steps will be the reimplementation of our network
communication through HTTP.

Even if it is not mandatory to comply with the RESTful
style, WoT usually employs the HTTP protocol as a com-
munication layer because of its simplicity and wide adoption
to ensure ample deployment.

4.1.3 Operations
WoT uses HTTP verbs to retrieve, create, modify or delete

web resources. Retrieval is done using HTTP GET, creation
by means of HTTP POST, modifications with HTTP PUT
and removals with HTTP DELETE. Finally, the HTTP OP-
TIONS command is used to introspectively find out what
operations are allowed for any URL.

TS and tuplespace solutions offer different primitives to
write, read and delete content. In our solution, the pre-
viously explained write, read and take primitives do that.
Apart from these primitives, other ones are provided to man-
age spaces, to claim the manager role for a type of content in
a space, event notification or traditional request-reply style
service consumption. Anyway, in this paper we are going to
focus in the first ones because they are inherent to the TS
paradigm.

4.1.4 Format
WoT usually returns a human readable HTML represen-

tation for a resource and XML or JSON common web rep-
resentations to be used in mashups. One of the key mecha-
nisms that WoT inherits from HTTP is content negotiation,
which enables clients and servers to negotiate the requested
and provided representations for any given resource.

1http://jxta.kenai.com/
2TripCom (IST-4-027324-STP, www.tripcom.org)

TS does not provide this response format negotiation mech-
anism. So, OtsoPack interchanges data in N-Triples for-
mat, which is the most primitive representation of semantic
data. In any case, other alternative semantic representations
(e.g. RDF/XML, OWL/XML, Turtle or N3) could be eas-
ily adopted as they basically describe the same RDF triples
under different textual wrappers.

4.1.5 Developer aid
In ROA an agreement about the data being exchanged

and how it can be accessed is needed to develop applications.
On the one hand, WoT can define machine processable data
using XML or JSON, but thanks to the Semantic Web TS
can go one step further formally defining them and making
them also “machine understandable” (i.e. it is capable of
inferring new knowledge and make high-level queries over
it).

On the other hand, both WoT and TS offer some oper-
ations and interfaces to access them. Whereas in TS this
interface is the same in each node and it is closely related
with TS operations and resources, in WoT it changes in each
application making a previous learning process necessary to
use them.

4.1.6 Coupling
The REST style describes loosely coupled services due

to the platform independent, asynchronous and few self de-
scribing messages [16]. In a very similar manner, TS offers
different kind of autonomies [12]: time autonomy (because
of its asynchronous nature), location autonomy (information
providers and consumers are independent from where the
data is stored), reference autonomy (nodes do not need to
know each other) and data schema autonomy (it follows the
RDF specification making it independent of nodes internal
data schema).

In spite of the outlined decoupling nature of both ap-
proaches, the data definition can be considered a coupling
mode indeed. While in WoT each resource defines its own
data formats and contents themselves, in TS the ontology in
which the semantic concepts are described must be known
by each part of a distributed application to effectively coop-
erate among them.

4.1.7 Discovery
One of the main drawbacks in WoT is the lack of a dis-

covery mechanism for new objects and the data they pro-
vide. Even when this data can be linked in each object re-
sponse (using HATEOAS) and microformats are sometimes
included to ease the search-ability of these objects by search
engines, it is difficult for an object which may change of loca-
tion and context to be referred. Thus, WoT may have a ten-
dency to create isolated islands of data. Several workarounds
have been proposed to overcome this limitation, such as us-
ing a central repository3, a framework which uses federated
repositories responsible for different administrative domains
[18] or making each connected sensor announce itself to let
an intermediary know its presence [11].

TS provides a transparent data level discovery mechanism
to the user since when a node joins a space (i.e. a group),
its data become queriable by any other node joint to this
space. In OtsoPack the space management and communi-
cation relies on Jxta, a protocol which can be used at any

3http://www.pachube.com/

level (even if we have mainly used it on local environments
using Jxta’s discovery layer’s capabilities).

4.1.8 Scalability
The scalability of WoT is argued to be well proved since

the World Wide Web is the most practical scalable system.
As many objects as necessary could be added to WWW
without making it worse.

Although Jxta scalability has been discussed and addressed
in several works [1], since our solution is fully decentralized
and uses flooding (each query is spread to the rest of the
peers which belong to a space), its scalability is expected
to be poor. To overcome this limitation, we are working on
implementing Semantic Overlay Networks (SON) to let the
objects automatically divide the spaces into smaller ones and
address queries just to the appropriate nodes which conform
a semantically related space.

Figure 2: Proposed distributed SON-based solution.

As can be appreciated in Figure 2, the proposed solu-
tion aims to split the spaces up into smaller subspaces. To
do so, semantically similar contents are placed together in
the same subspaces. E.g. subspaceA contains graph1 and
graph2 which describe “light” related knowledge. In the
meantime, the nodes from the original space (space1) can
organize themselves to create another subspaceB containing
the relevant data for describing “mobile phones”.

4.1.9 Semantics
On the one hand, WoT uses predefined microformats to

embed semantic information into human readable pages.
Doing so, the search process performed by search engines
is enhanced [9]. On the other hand, TS allows the usage
of full semantics, more expressive than microformats, using
RDF as a base. This makes TS capable of using standard
query languages such as SPARQL and it becomes also inde-
pendent of third parties’ products to search data.

4.2 Using WoT in a TS solution

To demonstrate the complete compatibility between TS
and WoT approaches, we first used a WoT solution in a TS
node. We used a gateway [10] which provides access to sen-
sors and actuators through RESTful services. To adapt it to
the TS paradigm, we added to it a new data representation
using a set of semantic triples (in this first approach, the
solution is dependent on the ontology of the scenario).

In OtsoPack, each node is mainly made up of two parts:
the network layer and the data access layer. While the first
one has the responsibility of keep a node communicated with
the rest of the nodes of the space, the second one stores the
triples managed by this node. In OtsoSE we have replaced
this data access layer to obtain the semantic information
from the gateway instead of from a semantic repository.
Doing so, the TS primitives addressed to the gateway are
translated into an HTTP request as summarized in Table 2.

The Read primitive has two different types of implementa-
tions. In the most basic one, the graph is identified by a URI
which in this case coincides with the URL of the service that
returns it (for example, in the case of temperature sensor
http://node/sunspots/SpotName/sensors/temperature/). In
the second implementation, the template is passed in as a
query string parameter for the GET command issued to a
specific URL and the gateway checks all the graphs to fa-
cilitate a response. The Query operation has a similar be-
haviour. The Write parses the contents of the triples ex-
tracting values and makes a POST request with them over
a particular actuation service URL to change its state.

4.3 Making TS nodes part of the WoT
In this section, a proposal to make any TS node WoT

compliant is explained. To do that access to a TS should be
provided through a RESTful service (as shown in Table 3).
As in TS, spaces, graphs, subjects, predicates and objects
are identified by URIs, in order not to make the requesting
URLs too long, each node should provide a prefix mechanism
to enable the URI shortening at http://nodeuri/prefixes/.
This node will return all the prefixes used by this node, so
they can be used inside any URL by simply using a name
followed by ”:“ and the last part of the URI.

To see the graphs available in a concrete node,
http://nodeuri/spaceuri/[graphs] could be accessed. To ac-
cess each graph in a space, no matter if it is stored by the
node responding to the HTTP request or not, we could ac-
cess http://nodeuri/spaceuri/graphs/[graphuri]. It will be
internally translated into a readprimitive. To locate a graph
giving a template the accessed URL will be
http://nodeuri/spaceuri/graphs/[template]. The HTTP
DELETE verb should return the graph and delete it from
the node where it was stored.

We propose specifying first a subject subject/[subj-uri]/
and concatenate /predicate/[pred-uri]/ and object/[obj-val]
if needed to specify a template. The order should be this,
but any of them could be optional to express that any value
could be ok (wildcard option). To express a ?s ?p ?o .-like
template (any triple matches it), the URL ended by any
could be used.

To perform a queryhttp://node/spaceuri/query/[template]-
like URL should be accessed and to write a new graph the
user should make a HTTP POST request to
http://nodeuri/spaceuri/graphs/ obtaining the new graph’s
URI as response.

Table 2: Mappings between OtsoPack’s primitives and HTTP requests addressed to a WoT solution.
TS primitive HTTP request

read(spaceURI,[graphURI]) HTTP GET over [graphURI]
read(spaceURI,[template]) HTTP GET over http://gateway/read?template=”[template]“
query(spaceURI,[template]) HTTP GET over http://gateway/query?template=”[template]“
write(spaceURI,[template]) HTTP PUT over http://gateway/sunspots/[SpotName]/leds/led[0-6]

Parameters:

• switch=[true/false]
• redColor=[0-255]
• blueColor=[0-255]
• greenColor=[0-255]

Table 3: Examples of REST access to TS (sp:ex is a space URI, sp:gr1 is a graph URI and templates are
expressed between quotes)

HTTP request URL Returns

GET http://nodeuri/prefixes The list of prefixes used by the node
GET http://nodeuri/prefixes/sp The URI that “sp” prefix represents
POST http://nodeuri/prefixes Add a new prefix

(parameters: URI & prefix name)
GET http://nodeuri/sp:ex/query/any query(sp:ex,"?s ?p ?o ."): triples

POST http://nodeuri/sp:ex/graphs write(sp:ex,triples): URI

(parameter: triples)
GET http://nodeuri/sp:ex/graphs The list of graphs stored in this node
GET http://nodeuri/sp:ex/graphs/sp:gr1 read(sp:ex,sp:gr1): triples

GET http://nodeuri/sp:ex/graphs/subject/sp:s1 read(sp:ex,"<sp:s1> ?p ?o ."): triples

DELETE http://nodeuri/sp:ex/graphs/sp:gr1 take(sp:ex,sp:gr1): triples

DELETE http://nodeuri/sp:ex/graphs/object/sp:o1 take(sp:ex,"?s ?p <sp:o1> ."): triples

5. DISCUSSION
In the previous section, the two-way compatibility be-

tween the TS and WoT approaches has been described. As
has been shown, WoT is good due to its scalability and usage
of web standards, which makes it easy to be understood by
potential developers (which encourages its usage). Our TS
solution, on the other hand, provides good local discovery of
new resources and their information and allows more expres-
sive semantic data definition which leads to more expressive
and sophisticated queries. Taking this into account, a sce-
nario which takes advantage of the potential combination of
these approaches has been sketched (see Figure 3).

As the TS solution allows to easily deploy and share data
among network-connected objects in local environments
(thanks to the dynamicism of P2P architecture and the data
level discovery), a user could create two spaces both at home
and at his workspace populated by both TS native nodes or
wrapped web enabled objects (as explained in section 4.2).

Both places will provide a REST API through a nearly
always turned on machine. Doing so, the scalability of WoT
systems is inherited and at the same time compatibility with
WoT solutions and general REST services is ensured. This
would allow to this user or another skilful, and authorized,
developer to make a mash-up to create a common manage-
ment interface to provide access to all the sensors on both
spaces. This control panel could be enriched with external
services such as the weather in each physical location or an
WoT device, and it will provide a rich query interface to
take advantage of the knowledge held in the underlying TS.

The user and his flat-mates, will have a semantic profile

created using a wizard and hosted in their mobile phones.
Whenever one of them enters their home, the mobile will
connect to the home TS (e.g. ts://aitor/home) acting as a
new node which attempts to adapt the environment (home)
to its owner’s preferences. For instance, it will try to adjust
the temperature according to the user’s preferences writ-
ing the temperature preference in the TS shared with the
network-connected air-conditioning system. On the other
hand, the mobile phone could easily monitor the home both
querying the TS space directly whilst at home or through
the REST access both at home when it is away.

Figure 3: Proposed hybrid scenario.

6. CONCLUSIONS
This paper compares two different resource oriented ap-

proaches for the Internet of Things: Web of Things and
Triple Space. WoT seems to scale in a better way thanks to
the underlying HTTP protocol, while TS performs the dis-
covery process among locally available network-connected
objects in a seamless way. The first one is more human
oriented and the second one relies on the Semantic Web ca-
pabilities to exchange a machine processable data. Further-
more, the second one is ideal to easily configure intranets
of network connected objects whilst the first one can eas-
ily bridge those intranets configuring global multi-site IoT
ecosystems.

We deem that both approaches can win much from their
combination since the weaknesses of one are outweighed by
the strengths of the other. Hence, they can be combined
to offer a more scalable, machine and human processable
solution that offers better cooperation possibilities among
internet-connected objects and thus aid users in their daily
activities. As a simple proof of this hypothesis, a scenario
employing WoT to export each space data to the outer world
and TS to enable seamless and automatic configuration of
heterogeneous devices on local networks has been presented.

For our future work, we are planning to implement TS over
HTTP to achieve a hybrid WoT and TS solution. In addi-
tion, we plan to centre our effort both on security, particu-
larly authorization, issues and on improving the performance
of our solution using semantic overlay networks to enable
nodes auto-organization. Besides, the inclusion of a seman-
tic reasoner to allow more intelligent coordination among
distinct networked objects targeted towards better pleas-
ing user needs will be considered. Finally, a performance
analysis in heavily populated simulated scenarios should be
performed.

7. ACKNOWLEDGMENTS
This project has been financed under grant PC2008-28 A

by the Department of Education, Universities and Research
of the Basque Government for the period 2008-10.

8. REFERENCES
[1] G. Antoniu, L. Cudennec, M. Jan, and M. Duigou.

Performance scalability of the JXTA P2P framework.
In 2007 IEEE International Parallel and Distributed
Processing Symposium, page 109, 2007.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web, volume 284. 2001.

[3] P. Costa, L. Mottola, A. Murphy, and G. Picco.
Programming wireless sensor networks with the teeny
lime middleware. Middleware 2007, pages 429–449,
2007.

[4] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L.
Murphy, and G. P. Picco. Tinylime: Bridging mobile
and sensor networks through middleware. 2005.

[5] D. Fensel. Triple-space computing: Semantic Web
Services based on persistent publication of
information. Intelligence in Communication Systems,
pages 43–53, 2004.

[6] A. Gómez-Goiri, M. Emaldi-Manrique, and
D. López-de-Ipiña. A semantic resource oriented
middleware for pervasive environments. CEPIS
UPGRADE journal, page 6, Feb. 2011.

[7] D. Guinard, M. Fischer, and V. Trifa. Sharing using
social networks in a composable web of things. In
Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International
Conference on, pages 702–707, 2010.

[8] D. Guinard and V. Trifa. Towards the web of things:
Web mashups for embedded devices. In Workshop on
Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings
of International WWW Conferences, Madrid, Spain,
2009.

[9] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From
the internet of things to the web of things: Resource
oriented architecture and best practices. In
Architecting the Internet of Things. Springer, May
2011.

[10] D. Guinard, V. Trifa, and E. Wilde. A resource
oriented architecture for the web of things. In
Proceedings of Internet of Things 2010 International
Conference (IoT 2010), Tokyo, Japan, Nov. 2010.

[11] A. Kamilaris, V. Trifa, and A. Pitsillides. The smart
home meets the web of things. International Journal
of Ad Hoc and Ubiquitous Computing (IJAHUC),
Special issue on The Smart Digital Home, 2010.

[12] R. Krummenacher, M. Hepp, A. Polleres, C. Bussler,
and D. Fensel. WWW or What is Wrong with Web
services. In Web Services, 2005. ECOWS 2005. Third
IEEE European Conference on, page 9. IEEE, 2006.

[13] G. Moritz, E. Zeeb, S. Pruter, F. Golatowski,
D. Timmermann, and R. Stoll. Devices profile for web
services and the REST. In Industrial Informatics
(INDIN), 2010 8th IEEE International Conference on,
pages 584–591, 2010.

[14] L. J. Nixon, E. Simperl, R. Krummenacher, and
F. Martin-Recuerda. Tuplespace-based computing for
the semantic web: a survey of the state-of-the-art. The
Knowledge Engineering Review, 23(02):181–212, 2008.

[15] B. Ostermaier, F. Schlup, and K. Romer. WebPlug: a
framework for the web of things. In Pervasive
Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International
Conference on, pages 690–695, 2010.

[16] C. Pautasso and E. Wilde. Why is the web loosely
coupled?: a multi-faceted metric for service design. In
Proceedings of the 18th International Conference on
World Wide Web, pages 911–920, 2009.

[17] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. big’web services: making the
right architectural decision. In Proceeding of the 17th
International Conference on World Wide Web, pages
805–814, 2008.

[18] V. Stirbu. Towards a RESTful plug and play
experience in the web of things. In The IEEE
International Conference on Semantic Computing,
pages 512–517, 2008.

