
Security analysis and resource requirements of
group-oriented user access control for

hardware-constrained wireless network services

D. Ventura1, Aitor Gómez-Goiri2, V. Catania1, Diego López-de-Ipiña2,
J.A.M. Naranjo3, and L.G. Casado4

1 Dpt. of Electrical, Electronic and Computer Engineering,
University of Catania, Italy

{daniela.ventura, vincenzo.catania}@dieei.unict.it
2 Deusto Institute of Technology - DeustoTech,

University of Deusto, Spain
{aitor.gomez, dipina}@deusto.es
3 OAK Team, INRIA-Saclay, and
LRI, Université Paris-Sud, France

juan-alvaro.munoz-naranjo@inria.fr
4 Dpt. of Computer Science,

University of Almeŕıa,
Agrifood Campus of International Excellence (ceiA3), Spain

leo@ual.es

Abstract. We extend and analyze a previous access control solution for
wireless network services with group-based authorization. Authentication
and encryption are provided, and access control relies on user identity,
group membership and time intervals. Both the basic solution and the
extension focus on minimizing computation, energy, storage and commu-
nications on the sensor side: computations involved rely on symmetric
cryptography and key derivation functions, and no additional messages
between user and sensor are needed. The performance of our solution is
proven by experiments on a highly constrained platform such as Arduino.
Finally, its security is validated against the AVISPA tool.

Keywords: access control, group-based authorization, wireless network
services, Internet of Things, ubiquitous computing

1 Introduction

Together with mobile computing, IoT constitutes the clearest sign of the Ubiqui-
tous Computing prominence in our current lives [1]. On the other hand, security
has been an ever-present concern in Internet communications, and will keep be-
ing in the new scenario: if we want the IoT paradigm to reach all its possibilities
then we need to provide reliable routines for information encryption and user au-
thentication and authorization. Furthermore, these routines must be able to run
seamlessly in very constrained hardware: small and cheap devices with limited
processing capabilities and sometimes energy restrictions. For example, a typical
mote in a wireless sensor network is not able to make use of public key cryptog-
raphy (on a frequent manner at least) given the high computational and energy

demands of the latter. Hence very lightweight security routines are needed. In
[2] we presented an access control solution for wireless environments in which
users access services offered by constrained devices (e.g., wireless sensors). This
solution provides efficient encryption, authentication and authorization on a per-
user basis, i.e. a given user can access the services offered by a given sensor based
on her identity. Furthermore, it needs no additional messages in the user-sensor
communication. In [3], we extend the work in [2] in order to differentiate groups
of credentials in the authorization process, i.e., users can access the services of-
fered by a group of sensors when they have the corresponding group credentials.
The groups can be either hierarchical or non-hierarchical. In the latter, members
in different privilege groups enjoy different non-hierarchical sets of services. In
the former, members in higher privilege groups enjoy more services than lower
level users. Here, we study the basic protocol and the group credentials extension
in terms of security and resource requirements. A security analysis is performed
with the AVISPA tool [4] and experiments are conducted in the Arduino plat-
form, thus complementing earlier results obtained with a Raspberry Pi unit [2].
At the time of publication the source code used for the experiments is being
consolidated with the aim of offering an open-source solution that can be used
by the community in real deployments [5].

The article is organized as follows. Section 2 discusses some proposals from
the literature. Sections 3 and 4 present the scenario we are addressing here
and recall the basic protocol, respectively, while Section 5 describes the groups
extension. Sections 6 and 7 shows experimental results in the Arduino platform
and analyses the security of the protocol with the AVISPA tool. Finally, Section
8 concludes the article.

2 Related work

The popular SPINS solution [6] provides lightweight symmetric encryption and
authentication in wireless sensor networks where a Base Station is actively in-
volved. It is composed of two sub-protocols: SNEP, which provides encryption,
authentication and data freshness evidence between two parties, and µTESLA,
used for authenticating broadcast messages to the whole network. LEAP+ [7]
proposes an authentication and encryption framework for similar scenarios. Apart
from its own protocols, µTESLA is used for authentication of broadcast mes-
sages from the Base Station. Ngo et al [8] proposed an access control system for
the scenario we address here: wireless networks that provide services to users
supported by an Authorization Service. It provides both individual and group-
based authentication thanks to the combination of user keys and group keys.
The recent MAACE [9] also focuses on the same scenario with individual and
per-group authentication. However its storage requirements at every sensor are
very large (sensors must store all keys shared with online users at a given time).
The authors solve the storage problem by involving the Base Station in frequent
communications, which is not a proper solution from our point of view since
sending information is by far the most energy-consuming operation for sensors.

3 Scenario

The scenario we address in this work involves three kinds of players: sensors,
Base Stations and user devices (e.g. smartphones), interacting together in a
given facility (buildings, factories, greenhouses, homes, etc).

Sensors are extremely constrained wireless devices, frequently battery-powered
and with reduced computational capabilities, which provide users with services
of any kind.

Base Stations are better equipped devices that handle groups of sensors for
message routing purposes, data collection and also for key management in our
case. They are assumed to have a more powerful hardware and a permanent (or
at least much larger) power supply and large storage space.

Finally, users communicate with Base Stations and sensors through their
powerful smart devices, such as mobile phones or tablets.

The key point here is that sensors need to perform access control on users
but face several limitations: 1) they are not able to handle complex public-key
authentication nor encryption routines and 2) they do not have enough memory
space so as to keep large sets of user keys. In consideration of those constraints
the basic protocol in [2] provides an access control mechanism with symmetric
encryption and authentication routines which minimizes storage requirements.
On top of that, the groups extension introduced in [3] allows to manage users on
a per-group basis: each user group has a different set of privileges, meaning that
they can access different sets of the services provided by the sensors. For the
sake of completeness, both methods are shown here. Table 1 shows the notation
used throughout the article.

4 The basic protocol

Here we briefly summarize the initial version of the protocol as showed in [2].
It provides encryption and user access control to user ↔ sensor one-to-one com-
munications. The Base Station, a more powerful device, performs high-level au-
thentication on the user (with authorization certificates based in public key
cryptography, for example) and provides her with two symmetric keys (for en-
cryption and authentication, respectively) and parameters for their generation
at the sensor. If those parameters are attached to the first message of a conver-
sation then the sensor can input them to a Key Derivation Function in order to
obtain an identical pair of symmetric keys that make communication possible.
Figure 1 depicts the message exchange in the protocol. Let us explain it with
more detail.

1. At the time of sensor deployment, the latter receives a master secret MSS ,
which is secretly shared by the Base Station BS and the sensor S (see the
end of this section for secret channels).

2. Upon arrival, user A sends her credentials (e.g. an authorization certificate)
to BS so high-level access control can be performed, and the list of sensors
she wants to communicate with (in Fig. 1 we only consider S). This step is
run only at user arrival.

A, BS, S User, Base Station and Sensor identifiers, respectively
MSS Master secret for sensor S
KencS,A, KauthS,A Encryption and authentication keys for communication

between sensor S and user A
KencS,A{x, ctr} x is encrypted in counter mode using key KencS,A

and counter ctr
MACKauthS,A(x) A MAC is done on x using KauthS,A

KDF (x, {a, b}) A Key Derivation Function is applied to master secret x
using a as public salt and b as user-related information

H(x) A hash function is applied to x
x||y Concatenation of x and y
IDA Identifier of user A
a Random integer salt
init time, exp time Absolute initial and expiration time of a given key
MSp Master secret for privilege group p
Kencp,A, Kauthp,A Encryption and authentication keys between

sensors offering services for group p and user A
IDp Identifier of privilege group p
A → * User A sends a message to any listening sensor
Sp → A One sensor giving services from privilege group p sends a

message to A
Table 1. Notation

Fig. 1. Messages involved in the original protocol

3. BS computes:

(a) a, random integer salt

(b) (init time, exp time), keying material validity interval

(c) KencS,A, KauthS,A = KDF (MSS , {a, IDA||init time||exp time})

4. BS sends the information generated in the previous step to A under a secure
channel (see the end of this section).

5. A encrypts her first message to S with KencS,A in counter mode (thus using
a fresh counter ctr), attaches parameters IDA, a, init time, exp time, ctr
in plain text and a MAC obtained with KauthS,A.

6. Upon reception of the message, S obtains the key pair KencS,A, KauthS,A
by feeding the Key Derivation Function with the attached parameters; S
can now decrypt the message. The reply is encrypted in counter mode with
KencS,A and ctr + 1 and authenticated with a MAC using KauthS,A.

7. Any subsequent message is encrypted and authenticated with the same key
pair after increasing the counter by one.

When the message exchange finishes the sensor may delete all information
related to the user since it can be recomputed at the beginning of the next
exchange, thus saving space at the sensor. Caching techniques can be applied
though, as we will see in Section 7.

The sensor is sure of the authenticity of the user since the only way of knowing
(KencS,A, KauthS,A) is either knowing MSS (which is kept secret) or obtaining
it from the Base Station (which is actually the case). What is more, the MAC at
the end of the message provides integrity assurance in addition to authentication.
We refer the reader to [2] for more considerations on security, efficiency, message
overhead and storage of the basic protocol.

Regarding the trasmission of MSS from BS to S in Step 1, a secure channel
between them can be easily established by pre-installing a shared symmetric
key in S before deployment. Having a secure channel allows also to renew MSS

to enhance security (note that changing MSS will affect the keys generated in
Steps 3c and 6 so active users should receive a new pair). For the secure channel
between A and BS mentioned in Step 4 we assume both the user device and the
base station can use public-key cryptography (e.g. SSL/TLS).

5 A groups extension

In this section we address a scenario with different groups of users, each group
giving its members access privilege to a given set of services provided by sensors.
Services provided by a sensor may (but not necessarily) belong to more than one
group. The associated access control routines should not be intensive in terms
of computations or message exchanges.

Let us assume that there are l > 0 groups. The main idea is that there exists
a different master secret MSp for every privilege group p ∈ [1, l], hence sensors
should only reply to service requests encrypted and/or authenticated with a
key pair derived from the corresponding master secret. In [3] we propose two
different approaches based on how services are arranged into groups. In Approach
1 privilege groups are not hierarchical, like in the case of employees that are
allowed to enter different areas of a facility based on their activity (though some
services might be in more than one group). In Approach 2 privilege groups are

hierarchical, hence a user with privilege level p should enjoy all privileges from
groups [1, p]. An example of this scenario is a smart house with different privilege
groups based on age: children would have access to certain services of the house,
while parents should have full control of the house.

Due to lack of space we refer the reader to [3] for theoretical considerations
about security and overhead in message length and storage.

5.1 Approach 1: non-hierarchical privilege groups

In this case, the Base Station generates l independent random master secrets
MS1, . . . ,MSl assuming there exist l different privilege groups. Sensors offering
services from any privilege group p receive MSp from the Base Station under a
secure channel. In this scenario, users will typically belong to one group only,
and sensors will provide services to one group as well. Figure 2(a) shows an
example with three users and three sensors. However, if a sensor offers services
to different privilege groups (or if a given service is included in more than one
group), then the sensor should store each group’s master secret. In a similar
way, users assigned to more than one group (if that occurred) should receive a
different pair of keys per group, and use the appropriate one to the requested
service.

When user A arrives at the system the Base Station authenticates her and
generates a different pair of symmetric keys (Kencp,A, Kauthp,A) for the privi-
lege group A belongs to (group p in this case). These keys are generated by the
BS and sensors assigned to group p in the same way as in the basic protocol: the
user identifier, a random salt a and a key validity interval (init time, exp time)
are fed to a Key Derivation Function along with the corresponding master secret
as shown in Eq. (1).

Kencp,A, Kauthp,A = KDF (MSp, {a, IDA||init time||exp time}) (1)

These keys are sent to A by the BS under a secure channel (see Section 4).
When user A wants to request a service from privilege group p she needs to
encrypt and authenticate her message with that pair of keys like in the basic
protocol (note that IDp has been added).

A→ ∗ : [Kencp,A{M, ctr}, IDA, IDp, a, init time, exp time, ctr,

MACKauthp,A
(M, IDA, IDp, a, init time, exp time, ctr)] (2)

Any nearby sensor providing services from group p (let us name it Sp) can
now reply to A after deriving the appropriate pair of keys from the received
information and MSp. The counter is explicitly stated on plain text so synchro-
nization is not lost due to an arbitrary sequence of messages if more than one
sensor is involved in the conversation.

Sp → A : [Kencp,A{M ′, ctr + 1}, ctr + 1, MACKauthp,A
(M ′, ctr + 1)] (3)

(a) Approach 1 (b) Approach 2

Fig. 2. Examples of the two approaches with three groups.

5.2 Approach 2: hierarchical privilege groups

In this case, services are arranged in hierarchical groups: users assigned to privi-
lege group p should be granted access to all services in groups [1, p]. Here every
sensor in the system receives the lowest group’s level master secret MS1 from
the BS. The rest are obtained by hashing the immediately lower master secret,
i.e. MSp = H(MSp−1). This requires lower permanent storage requirements at
the cost of a slightly higher computational demand and more security risks as
every sensor can obtain the master secret for any privilege level. Figure 2(b)
shows an example with three users and three sensors.

Thanks to this modification, user devices need to store only one pair of keys,
that of the highest privilege level they are granted. For example, a user A in
group 3 will only receive (Kenc3,A, Kauth3,A) from the Base Station. However
the use of this key pair is enough for being granted access to any service in
groups 1 to 3.

The verification of user credentials at the sensor side goes as follows. After re-
ceiving a message encrypted and authenticated with (Kencp,A, Kauthp,A) (see
Eq. (2)) the sensor derives MSp = H(...H(MS1)). From MSp and user-bound
parameters the sensor obtains (Kencp,A, Kauthp,A) as in Eq. (1). Communica-
tions can now be established as in Eq. (3).

5.3 Combining hierarchical authentication with individual privacy

The basic protocol provides one-to-one authentication and encryption between a
user and a sensor. On the other hand, approaches 1 and 2 allow to perform one-
to-many authentication and encryption: all sensors holding the affected master
secret will be able to authenticate the user and decrypt the conversation. Next,
we consider the possibility of having services that demand one-to-one private
communications and group-based authorization at the same time. For achieving

this we base on Approach 1, however the extension to Approach 2 is straight-
forward.

In this case sensor S is assigned by the Base Station an individual master
secret MSS (as in the basic protocol) and one master secret MSp for each
privilege group p the sensor provides services from (in Approach 2 the sensor
would be assigned MS1 and would derive the rest by hashing).

User A is assigned a pair of keys for individual communication with S,
i.e. (KencS,A, KauthS,A), and a pair of keys (Kencp,A, Kauthp,A) for the
privilege group she is entitled to, say p. Like before, these keys are gener-
ated for A by the Base Station by feeding MSp and user-related parameters
IDA, a, init time, exp time to a Key Derivation Function.

Now, when A wants to communicate only with S while proving her autho-
rization level, she encrypts her messages with KencS,A and computes the cor-
responding MAC with Kauthp,A as in Eq. (4). S replies using the same pair of
keys and incrementing the counter, which needs not to be included on plain text
given that the message exchange takes place between two players only:

A→ S : [KencS,A{M, ctr}, IDA, IDp, a, init time, exp time, ctr,

MACKauthp,A
(M, IDA, IDp, a, init time, exp time, ctr)] (4)

S → A : [KencS,A{M, ctr + 1},MACKauthp,A
(M, ctr + 1)] (5)

6 Experimental environment

To evaluate our solution we measure two different aspects: how it behaves in a
embedded platform and its security strengths and weaknesses.

In order to measure its performance we have implemented and tested step
3c of the protocol in Section 4, which is the core of our proposal and its most
resource-demanding stage. The tests were run in the Arduino platform [10]. The
code is publicly available at http://github.com/dventura3/Nist.

We run the experiments in two Arduino boards (Uno and Mega) to analyse
whether they behave differently. Table 2 shows their technical specifications.

Table 2. Technical characteristics of the assessed Arduino boards

Arduino
Microcontroller

Flash
SRAM EEPROM Reference

Board Memory

Uno 16 MHz ATmega328 32 kB 2 kB 1 kB [11]
Mega2560 16 MHz ATmega2560 128kB 8 kB 4kB [12]

Furthermore, for the derivation function we used keys of different lengths: 128
bits, 256 bits and 512 bits. To derive the keys, we used the NIST key derivation
function [13] together with the HMAC-SHA-1 and HMAC-SHA-256 authentica-
tion functions [14]. SHA-1 is used as a baseline, although its use is currently not

http://github.com/dventura3/Nist

advised anymore. SHA-512 implementation is not currently implemented in the
Cryptosuite library used 5. Therefore, to obtain the key 512 bits key we call to
SHA-256 twice with two different subkeys.

7 Evaluation

7.1 Performance evaluation

To know the impact of our solution in Arduino, we derived keys of 128, 256 and
512 bits 100 times in each of the Arduino models tested. The average time needed
to derive each key is 28.67, 99.84 and 288.15 ms respectively with standard
deviations of less than 1 ms. The measures showed no difference between models.

The sensor, i.e., the Arduino board, will need to generate two keys: one
for authentication and another for encryption. Considering, the 288 ms needed
to generate a 512 bits key, it will require 576 ms in total. If we also take into
account the additional tasks to be performed afterwards (decryption, encryption
and MAC), the sensor might take too much time to answer a request. To mitigate
this effect, the sensor can cache the pair of keys for each user/group at the cost
of using more memory.

To analyse how our solution would affect the memory consumed by an Ar-
duino board, we first checked how deriving keys affects their free memory. Each
Arduino board allocated 38, 54 and 106 bytes during the generation of each key
of 128, 256 and 512 bits respectively.

Since the most power-demanding operation in a sensor is airing messages
through its antenna [6,7], we only send the data needed to create a key once
(see Figure 1). This reduces the message length of the subsequent requests, but
forces the sensor to store IDp, a, init time, exp time and the updated ctr to
regenerate each key. Arduino needs 16 bytes to store each of these set of fields.
Figure 7.1 represents this case with the blue bars. Considering the most limited
board (i.e., Uno), it is able to manage the data of 26, 24, 20 users or groups for
each key length in SRAM with the current program. As the program is loaded
also in SRAM, a more complex program will reduce this number. However, if
we ignore all the MSS stored and other additional data stored by the program,
the EEPROM could store enough information for other 64 additional users or
groups.

The available EEPROM will be additionally reduced in approaches 1 and 2
because they require the sensor to store permanently a pair of keys for the group.
Approach 1 requires the sensor to store a master secret for every privilege group
it might be assigned to. In Approach 2, the sensor can decide (a) to permanently
store a single master secret or (b) to store all master secrets once derived. Case
a saves computations at the cost of the space, while Case b the saves memory
increasing the computation.

If the sensor caches the keys as suggested before, it will keep in memory
KencS,A, KauthS,A, IDa exp time, and the updated ctr. This will require it

5 https://github.com/dventura3/Cryptosuite

https://github.com/dventura3/Cryptosuite

Simple case: SRAM, EEPROM
Caching keys: SRAM, EEPROM

a) Arduino Uno b) Arduino Mega

Fig. 3. A sensor needs to keep a set of fields about each user/group it communicates
with. The chart shows how many sets each board can manage. In the most simple case
it derives the keys needed after each request. In the other, it caches the keys.

to store 50, 82 and 146 bytes for 128, 256 and 512 bits. Figure 7.1 represents
this case with the brown bars. Considering the memory already consumed by
the program, Arduino Uno will be able to keep the data for 13, 8 and 5 users in
SRAM for each key length. Using the EEPROM, it could manage the information
of 20, 12 and 7 additional users.

To summarize, normal operation of the device generating two keys at each
request is slow for the worst case (512 bits), but acceptable for the 128 and
256 bits cases. The storage of the keys in cache reduce the response time but
it also reduces the maximum number of users that can use the sensor due to
its memory limitations. The minimum of the maximum number of concurrent
users is five, which is determined taking into account the most limited board and
the most demanding memory instances of our experiments, i.e. memory needed
by the program, the 512 key lengths and the use of cache. The settings of the
systems will depend on the characteristics of the final devices and the number
of concurrent users the application demands.

7.2 Security evaluation with the AVISPA tool

The well known AVISPA tool (Automated Validation of Internet Security Pro-
tocols and Applications) [4] performs model checking for security protocols with
a high level of reliability. Model-checking techniques allow to automatically ver-
ify finite-state-concurrent systems such as communication protocols in a fast
and, more importantly, deterministic way. The latter implies that every possible
state of the protocol is visited. We have modeled our protocol in the HLPSL

(High Level Protocol Specification Language) [15] language specification and
used AVISPA 1.1 to search for possible attacks.

Two different flavors of our protocol were chosen for the analysis: (1) the
basic version (Section 4) and (2) the individual-groups combination (Section
5.3). The plain groups versions (Sections 5.1 and 5.2) can be considered similar
to the basic one since the only difference relies on which master secret is used
for key derivation. We have made both HLPSL scripts publicly available at
http://www.hpca.ual.es/~jalvaro/stuff/AVISPA/.

The three players have been modeled in each of them. As for the initial
(A,BS) and (BS,S) secure channels, the former has been modeled as a shared
symmetric key between both players, while in the latter case we assume the
master secret(s) are already known by both players.

Regarding security goals, the following ones were imposed:

1. Secrecy on the data sent from A to S (i.e. Steps 5 and 7 in Fig. 1).

2. Authentication on all keys used between A and S (i.e. KencS,A,KauthS,A
as well as Kencp,A,Kauthp,A) so any message encrypted and MAC-ed with
those keys must come either from A or S.

Communication channels assume the presence of a Dolev-Yao Intruder [16].
This implies three main assumptions: the adversary can (i) capture any message
in the network, (ii) impersonate any legitimate user and (iii) run many concur-
rent instances of the protocol. Other assumptions made by the model are (iv)
one-way functions are perfectly secure and (v) there exists a Public Key Infras-
tructure in which all public keys are known by all players and every private key
is only known by its owner (this one is not relevant to our protocol since we only
use symmetric key cryptography). The analysis covered concurrent instances of
both protocols with the intruder impersonating every role.

We tested the protocols against three of the model checkers provided with
AVISPA: OFMC, CL-ATSE and SATMC. These checkers verify the fulfillment of
the imposed security requirements at any possible execution state of both proto-
col versions. All outputs returned a ”SAFE” result against Dolev-Yao intruders
under the specified security requirements; no attacks were reported.

8 Conclusions

Here we study the security and performance of a group-based extension for
an access control protocol oriented to wireless network services. This extension
addresses infrastructures populated by constrained devices (such as wireless sen-
sors) that are arranged in different groups of services: users are granted access
to these groups depending on their privileges. We consider two different scenar-
ios, depending on whether privilege groups are hierarchical (entitlement to a
privilege group implies access to all services down to the lowest group) or not
(users can only access services contained in the very privilege group they are en-
titled to). Furthermore, we show a way of combining individual encryption with

http://www.hpca.ual.es/~jalvaro/stuff/AVISPA/

group-based authorization. Regardless of the approach chosen, the authentica-
tion and authorization processes are performed efficiently and with no additional
messages between the user and the addressed sensor.

In order to prove the security and applicability of our proposal we perform
two different tests. First, the security mechanisms in which this project is based
have been adapted to the popular Arduino platform. Using them, we have mea-
sured the performance of our solution in the real world. The key derivation
functions which are in the core of this paper show a good performance in these
really limited platforms. However, it is advisable to cache the keys to avoid
their re-generation affecting future requests of the same user or group. These
experiments complement earlier results obtained from a Raspberri Pi unit.

Second, we model the protocol in HLPSL language and we perform a security
analysis by means of the AVISPA tool with the following requirements: privacy
of the data and authentication of the cryptographic keys used in the protocol
against Dolev-Yao intruders. The tool did not find any attack.

As of future work, we plan to develop an open-source solution for real de-
ployments.

Acknowledgements

This work was funded by the Spanish Ministry of Economy and Competitiveness

(TIN2008-01117, TIN2012-37483, and IPT-2011-1558-430000), Junta de Andalućıa (P11-

TIC-7176), and partially by the European Regional Development Fund (ERDF). Part

of this work was done while J.A.M. Naranjo was with University of Almeŕıa.

References

1. Aitor Gómez-Goiri, Pablo Orduña, Javier Diego, and Diego López-de-Ipiña. Ot-
sopack: Lightweight Semantic Framework for Interoperable Ambient Intelligence
Applications. Computers in Human Behavior, Volume 30, Pages 460-467, January
2014, ISSN 0747-5632, 10.1016/j.chb.2013.06.022.

2. J.A.M. Naranjo, Pablo Orduña, Aitor Gómez-Goiri, Diego López-de-Ipiña and L.G.
Casado. Enabling user access control in energy-constrained wireless smart envi-
ronments. Journal of Universal Computer Science, Volume 19, number 17, Pages
2490-2505, November 2013.

3. J.A.M. Naranjo, Aitor Gómez-Goiri, Pablo Orduña, Diego López-de-Ipiña and L.G.
Casado. “Extending a User Access Control Proposal for Wireless Network Services
with Hierarchical User Credentials”. International Conference CISIS13. Advances
in Intelligent Systems and Computing (2014) 239 pp: 601-610.

4. The AVISPA Project. http://www.avispa-project.org

5. Lightsec Project. http://github.com/lightsec

6. Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V. and Culler, D. E. “SPINS: security
protocols for sensor networks”. Wireless Networks (2002) 8:5, pp: 521-534.

7. Zhu, S., Setia, S. and Jajodia, S. “LEAP+: Efficient security mechanisms for large-
scale distributed sensor networks”. ACM Transactions on Sensor Networks, (2006)
2:4, pp: 500-528.

http://www.avispa-project.org
http://github.com/lightsec

8. Ngo, H.H., Xianping W., Phu D.L. and Srinivasan, B. “An Individual and Group
Authentication Model for Wireless Network Services”. JCIT (2010) 5:1, pp: 82-94.

9. Le, X.H., Khalid, M., Sankar, R. and Lee S. “An Efficient Mutual Authentication
and Access Control Scheme for Wireless Sensor Networks in Healthcare”. Journal
of Networks (2011) 6:3 pp: 355-364.

10. Banzi, M. “Getting Started with Arduino”. O’Reilly Media, Inc, (2009).
11. Arduino Uno. http://arduino.cc/en/Main/arduinoBoardUno
12. Arduino Mega. http://arduino.cc/en/Main/arduinoBoardMega
13. Chen, L. “Recommendation for Key Derivation Using Pseudorandom Functions”.

NIST Special Publication 800-108 (2008).
14. Bellare, M., and Canetti, R, and Krawczyk, H. “Keying Hash Functions for Message

Authentication”. Proceedings of CRYPTO’96, pp: 1–15. Springer, 1996.
15. Chevalier, Y., Compagna, L. et al. A high level protocol specification language for

industrial security-sensitive protocols. Proceedings of Workshop on Specification
and Automated Processing of Security Requirements (SAPS), Linz, Austria, 2004.

16. Dolev, D., Yao, A. “On the security of public key protocols”. IEEE Transactions
on Information Theory, (1983) 29:2, pp:198208.

http://arduino.cc/en/Main/arduinoBoardUno
http://arduino.cc/en/Main/arduinoBoardMega

	Security analysis and resource requirements of group-oriented user access control for hardware-constrained wireless network services

