
Collaboration of Sensors and Actuators through
Triple Spaces

Aitor Gómez-Goiri, Pablo Orduña, David Ausı́n, Mikel Emaldi and Diego López-de-Ipiña
Deusto Institute of Technology DeustoTech, University of Deusto

Avda. Universidades 24, 48007 Bilbao, Spain
Email: {aitor.gomez, pablo.orduna, david.ausin, m.emaldi, dipina} @deusto.es

Abstract— In recent years, projects and initiatives under In-
ternet of Things have focused mainly on establishing connec-
tivity in a variety of challenging and constrained networking
environments. Hence, a promising next step should be to build
interaction models on top of this network connectivity and thus
focus on the application layer, i.e. how to achieve useful aggre-
gated functionality out of these Internet-connected ecosystems
of sensors and actuators. This work analyses the adoption of
Triple Spaces coordination language by very heterogeneous and
resource-constrained devices and outlines how its primitives can
help to develop fully distributed and very decoupled scenarios.

I. INTRODUCTION

Currently, the Internet of Things (IoT) is becoming increas-
ingly present thanks to the growing connectivity of everyday
objects which embed sensors and actuators. So far, most
initiatives have addressed connectivity issues in constrained
networking environments. Therefore, little attention has been
put on the interaction models which can help to achieve useful
aggregated functionality out of these devices.

A successful achievement of the IoT vision will only
be accomplished if those objects intelligently collaborate. A
prerequisite to allow this is to understand the information
they exchange in the form of services (functionality) and data
(normally information of their surrounding context). A well-
know current technique useful to provide data interoperability
is annotating with semantic metadata this information to
increase its expressivity. This semantic approach is used in the
solution presented in this work which aims to progress from
the current internet-connected objects that behave as isolated
islands of functionality towards smarter internet connected ob-
jects that collaborate autonomously or under user intervention.
To enable this collaboration, a new paradigm, namely Triple
Space (TS), based on a shared storage area distributed among
the objects and some coordination primitives to read and write
data into it, is used. Remarkably, we have adopted a RESTful
architectural style in TS to ensure its applicability in embedded
devices and its compatibility with the Web of Things (WoT)
emerging initiative [1].

II. RELATED WORK

Many different styles can be used to integrate applications
depending on application requirements. Hohpe et al.[2] enu-
merate batch data exchange, used to export data between
two systems offline; a shared database, which eliminates
synchronization issues having the data in a single place but

enforces the use of a common data model; raw data ex-
change, where two entities agree the format and how the data
is synchronously exchanged; remote procedure calls, which
isolate the application from raw data exchange; and message
exchange, which provides reliable asynchronous data transfer.
HTTP has been frequently used to ensure the interoperability
of different styles, as in the well known set of WS-*standards
and most of services following the REST style. While the first
one can be seen as both RPC or message exchange substyle,
the second one defines an elegant way to define resource-
oriented interfaces which comply with the RPC idea of isolat-
ing application from exchange particularities [3]. The use of
both substyles in resource-constrained devices is represented
by Device Profile for Web Services (DPWS) [4], based on
SOAP, and the WoT [1].

Other paradigms follow the idea proposed by Hohpe’s
shared database style of sharing a common space to coordinate
different entities. One of those paradigms is tuplespace, where
different processes read and write pieces of information so-
called tuples in a space, possibly distributed over different
nodes. This paradigm has been implemented to be run in
embedded and mobile devices [5] and in conjunction with
the Semantic Web [6]. In contrast with traditional integration
approaches, using the Semantic Web, it enables the use of
very expressive information and the inference of new implicit
information. One of the approaches which mixes up Semantic
Web with tuplespaces is Triple Space Computing (TSC), which
uses similar primitives with RDF triples as exchanged units.
Although different Triple Spaces implementation exist, none
of them has been specifically designed to be run in devices
with constrained capabilities apart from our solution [7].

III. A TS API OVER HTTP

The Triple Space (TS) paradigm basically consists on
writing and reading triples grouped in graphs in different
spaces. Our implementation of TS does this by allowing each
distributed node, no matter how complex or simple it is, to
manage its own information and to establish a communication
channel with the space it wants to join to, i.e. with each of the
nodes belonging to it. Queries are propagated to other nodes
which previously joined that space (regardless of who they are
at each time) and possible responses are received from them
using the same communication channel.



TABLE I
EXAMPLES OF REST ACCESS TO TS. sp IS A SPACE URI, g IS A GRAPH URI, s, p AND o-uri ARE SUBJECT, PREDICATE AND OBJECT URIS OR WILDCARDS

(REPRESENTED WITH A *). WHEN THE TEMPLATE’S OBJECT IS A LITERAL, IT CAN BE EXPRESSED SPECIFYING ITS VALUE (o-val) AND ITS TYPE (o-type).

HTTP request URL Returns
GET http://nodeuri/{sp}/query/wildcards/{s}/{p}/{o-uri} query({sp},"{s} {p} {o} ."): triples

http://nodeuri/{sp}/query/wildcards/{s}/{p}/{o-type}/{o-value}
GET http://nodeuri/{sp}/graphs/{g} read({s},{g}): triples
GET http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-uri} read({sp},"{s} {p} {o} ."): triples

http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-type}/{o-value}
DELETE http://nodeuri/{sp}/graphs/{g} take({sp},{g}): triples
DELETE http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-uri} take({sp},"{s} {p} {o} ."): triples

http://nodeuri/{sp}/graphs/wildcards/{s}/{p}/{o-type}/{o-value}

Remarkably, TS guarantees four basic types of autonomies:
location autonomy (information providers and consumers are
independent from where the data is stored), reference auton-
omy (nodes do not need to know each other), time autonomy
(they communicate asynchronously) and data schema auton-
omy (it follows the RDF specication making it independent
of nodes internal data schema). However, TS-based solutions
are dependent on the ontology which defines the exchanged
information or knowledge, i.e. they present data coupling. As
we will explain below, the operations or primitives which can
be issued over a Triple Space are independent of the semantic
data being shared.

Anyhow, nodes will only manage to collaborate among them
if they share a common pre-defined semantic vocabulary. This
is a common problem in highly decoupled communications,
such as Wire Admin Service [8] in OSGi, but in TS-based
solutions the information stored can be expanded by a Se-
mantic Reasoner. Even if at application level the data provider
writes a small set of triples, these set can be expanded with
inferred information and other nodes can perform queries on
that information. Therefore, the amount of possible different
requests that consumers can create are automatically increased,
even if they were not considered in the producer’s design
phase. For instance, if a sensor defines that the kitchen light
is on, and the ontology defines that the kitchen is next to the
living room and that the light is a sensor, a potential consumer
may query for all the sensors close to the living room.

The most important primitives of our solution are write,
query, read and take. Write adds new knowledge to a space
writing together the given triples in a new RDF graph and
returning its identifying URI. Query returns the triples which
match a given template conceiving the space as a whole no
matter to which graph they belong to. Read and take return
a whole RDF graph which can be selected by its identifying
URI or by a template. When a template is used, the graph
is returned if it contains at least a triple which matches it.
Take differs from read because it also subtracts the returned
graph from the space. The template used in these primitives
can be as simple as a triple pattern with wildcards (e.g. ?s) or
as complex as an SPARQL query, but in this work we have
just considered the first ones.

When writing data into a space a technique known as
negative broadcasting is used. It implies that all write op-

erations are executed locally at the node, but all read and
query operations are propagated to other nodes of a space. It
suits perfectly to use cases where nodes create and manage
their own information, such as a node in a mobile phone
maintaining a user profile or embedded sensors managing
their own generated data. This way, the primitives grant that
there will not be concurrency issues attributed to shared
information. Anyhow, this work will not cover the discovery
process between different nodes.

As REST architectural styles use HTTP verbs to retrieve,
create, modify or delete web resources and TS does the
same with RDF graphs, both concepts can be easily mapped
[9]. More specifically, the proposed mapping between both
styles is summarized in Table I and it is implemented in the
Open Source project Otsopack1, which adds other features not
covered in this contribution such as deployment, discovery or
security ones.

IV. STEREOTYPICAL SCENARIO

Two stereotypical scenarios for home automation had been
devised to assess our collaborative middleware proposition for
heterogeneous resource-constrained devices. In both scenarios
the emphasis has been put in how those devices can coordinate
in a decoupled mode thanks to it following the master-worker
pattern [10].

1http://code.google.com/p/otsopack/

Fig. 1. FOX Board G20 connected to a fan and the SunSPOT, one of the
devices responsible for capturing the temperature.



On the one hand, a room has been populated with several
kind of sensors such as Oracle’s SunSPOTs2, XBee sensors
with an IP gateway3, the sensors on a KNX20 domotic bus and
a fan connected to a FoxG204 embedded platform to act as an
actuator (see Figure 1). Besides, an Android application has
been performed to semantically store the user’s temperature
preferences. An independent node (master node) continuously
checks the room temperature using read primitive to get the
first available graph where the last measure is defined (no
matter which device provides that information) and the user’s
desired temperature. When the second one is below the first
one, it generates a “decrease temperature during a certain
period” task which can be consumed by different independent
worker nodes. In this case, the FoxG20 periodically checks
just for orders it can fulfil and it understands and consumes
them with a take primitive.

On the other hand, a message delivery system has been
designed using TS in order to avoid the sedentary lifestyle of
a certain user by giving him different warnings. Taking into
account the expected steps which should have been completed
in each moment of the day (10.000 steps are recommended
in average for an adult), different priority level messages are
created to warn the user about his situation. To figure out this,
a master node reads the number of steps covered by a user in
that day5 and his age both from the TS node deployed on his
Android phone. To achieve it, the semantic information is used
to find the accelerometers embedded in a user mobile’s and
his age. Depending on the priority of the messages, different
devices which belong to that user, defined in the ontology,
look for those messages. If the priority level is low, the user
can be warned in a less intrusive way than if the priority is
high. Hence, room’s light brightness can be increased for low
priority notifications, a chumby for normal priority ones or
the message is shown directly in his mobile phone when the
user should have covered many more steps than he has walked
(high priority).

V. EVALUATION

In order to prove that the proposed solution is light enough
to run in small devices, we have measured the time taken in
two of the devices detailed in the previous section: XBee and
FoxG20.

A. Measuring times in XBee

It is only possible to develop software in XBee using
Python. Therefore we implemented a version of the middle-
ware compatible with Otsopack in Python. This implementa-
tion was tested with the full Otsopack version successfully.
However, when measuring it problems started to arise when
more than 15 requests were performed concurrently in XBee
-which is not a usual scenario-.

2http://www.sunspotworld.com
3http://www.digi.com/products/wireless-routers-

gateways/gateways/connectportx2gateways.jsp
4http://www.acmesystems.it
5http://code.google.com/p/pedometer/

TABLE II
MEASUREMENTS FOXG20 (MILLISECONDS)

REST SOAP
Concurrent Mean Std dev Median Mean Std dev Medianrequests (σ) (σ)

1 17 0 17 49 0 49
5 97 16 97 253 34 245

10 174 28 175 513 65 513
15 282 43 278 814 102 776
20 375 30 366 1021 149 997
25 460 30 455 1287 77 1287
30 540 35 539 1552 109 1539
35 632 29 627 1748 124 1751

So as to compare the approach taken of relying on REST
with a possible SOAP based approach, we reimplemented the
operations in SOAP6 using the SOAPpy library. However, we
could not make the SOAP version run in the device because
it could not even load the required SOAP and XML libraries,
even after stripping away those files in these libraries that were
not required. XBee took around 77 milliseconds to return a
response, and a mean of 775 milliseconds if 10 clients are
performing concurrent requests, which is affordable.

B. Measuring times in FoxG20

Given that the Python implementation of the Otsopack
server was lighter than the regular Android/Java SE version of
Otsopack, we used it again to measure the FoxG20. FoxG20
is a more powerful platform than XBee. In fact, it can even
perform OWL reasoning in Python using the RDFClosure
library 7.

Using FoxG20, we could run it with 35 concurrent users
both using the REST and the SOAP version. As seen in Table
II, with SOAP it takes 2.6-3.0 times more than REST attending
to the means. Figure 2 presents the full distribution using
REST -Figure 2(a)- and SOAP -Figure 2(b)-. In this figure,
every number of concurrent requests has been tested twice.
Therefore, with 1 concurrent request there are 2 measures
(iterations), while with 10 concurrent requests there will be
20 measures.

The SOAP version is the one detailed in the previous
subsection, developed in Python and using SOAPpy. Given
that FoxG20 can run Java SE and C code, it would be
possible to measure other SOAP implementations that would
be faster than our REST implementation. This would also
require to redevelop Otsopack in those languages to make
a fair comparison. However, the focus of this evaluation is
to show that the proposed approach is light enough to be
run in small sensors using standard libraries. Furthermore, the
performance difference between SOAP and REST has already
been addressed in the literature [11].

6DPWS could not be tested because no Python implementation is available.
7http://www.ivan-herman.net/Misc/2008/owlrl/



(a) REST (b) SOAP

Fig. 2. Measures of the REST and SOAP versions in FoxG20 in milliseconds. Note that the time scale is different.

TABLE III
QUALITATIVE ANALYSIS OF OTSOPACK

Java SE Android FoxG20 XBee
Platform Java SE 6.0 Android 2.2 Python 2.5 Python 2.4version

REST
Libraries Restlet Restlet

Python Python
Standard Standard
Library Library

Semantic Rdf2Go Microjena RDFClosure Nonelibraries

C. Summary of evaluation

The proposed TS API over HTTP is a lightweight technol-
ogy, tested successfully in a range of devices. The response
times are small.

In Table III, we present a qualitative analysis of the different
Otsopack technologies used in the scenario. As detailed in the
table, we have aimed four different architectures (Java SE, An-
droid, FoxG20 and XBee) using two programming platforms
(Java 6 + Restlet and Python 2.4 with the Python Standard
Library). Attending to these platforms, different reasonement
levels can be achieved: Rdf2Go8 in Java SE encapsulates
different engines; Microjena9 in Android supports RDFS and
performs better than AndroJena10, which additionally supports
OWL; RDFClosure supports OWL, and no reasoning engine
could be executed in the XBee. However, those nodes which
are only sensors can be programmed to infer the information
they store manually, given that they only handle few triples.

VI. CONCLUSION

This paper shows how adopting HTTP for the communica-
tion layer and REST architectural style to define the access to
Triple Space Computing primitives, can ease its adoption in
very heterogeneous devices with limited computing capabili-
ties. Besides, two scenarios in which each device can focus on
achieving its own goal in a very decoupled way is presented.

8http://semanticweb.org/wiki/RDF2Go
9http://poseidon.elet.polimi.it/ca/?page id=59
10http://code.google.com/p/androjena/

As can be appreciated, the designed HTTP based TS API
has been used in 7 different kind of devices over two different
scenarios, showing that the proposed TS API is a lightweight
technology. For our future work, we are planning to further
test the solution in mobile phones, specifically addressing the
impact and benefits of the inference process on them.

ACKNOWLEDGMENT

This work has been supported by research grants TIN2010-
20510-C04-03 (TALIS+ENGINE project), funded by the
Spanish Ministry of Science and Innovation and TSI-020301-
2009-27 (ACROSS project), funded by the Spanish Ministry
of Industry, Tourism and Commerce.

REFERENCES

[1] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the internet of
things to the web of things: Resource oriented architecture and best
practices,” in Architecting the Internet of Things. Springer, May 2011.

[2] G. Hohpe, B. Woolf, and K. Brown, Enterprise integration patterns.
Addison-Wesley, 2004.

[3] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs.
big’web services: making the right architectural decision,” in Proceeding
of the 17th Intl Conference on World Wide Web, 2008, pp. 805–814.

[4] G. Moritz, E. Zeeb, S. Pruter, F. Golatowski, D. Timmermann, and
R. Stoll, “Devices profile for web services and the REST,” in Industrial
Informatics (INDIN), 8th IEEE Intl Conference on, 2010, pp. 584–591.

[5] P. Costa, L. Mottola, A. Murphy, and G. Picco, “Programming wireless
sensor networks with the teeny lime middleware,” Middleware 2007, pp.
429–449, 2007.

[6] L. J. Nixon, E. Simperl, R. Krummenacher, and F. Martin-Recuerda,
“Tuplespace-based computing for the semantic web: a survey of the
state-of-the-art,” The Knowledge Engineering Review, vol. 23, no. 02,
pp. 181–212, 2008.

[7] A. Gomez-Goiri, M. Emaldi, and D. López-de-Ipiña, “A semantic
resource oriented middleware for pervasive environments,” UPGRADE
journal, vol. 2011, Issue No. 1, pp. 5–16, Feb. 2011.

[8] O. Alliance, “Osgi service platform release 4 version 4.2 compendium
specification,” pp. 193–237, 2009.

[9] A. Gómez-Goiri and D. López-de Ipiña, “On the complementarity of
triple spaces and the web of things,” in Proceedings of the Second
International Workshop on Web of Things. New York, NY, USA: ACM,
2011, pp. 12:1–12:6.

[10] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces principles, patterns,
and practice. Addison-Wesley Professional, 1999.

[11] D. Yazar and A. Dunkels, “Efficient application integration in ip-
based sensor networks,” in Proceedings of the First ACM Workshop
on Embedded Sensing Systems for Energy-Efficiency in Buildings, 2009,
p. 4348.


